Show simple item record

dc.contributor.authorGenes L.S
dc.contributor.authorMontoya R.D
dc.contributor.authorOsorio A.F.
dc.date.accessioned2022-09-14T14:33:32Z
dc.date.available2022-09-14T14:33:32Z
dc.date.created2021
dc.identifier.issn2784343
dc.identifier.urihttp://hdl.handle.net/11407/7415
dc.descriptionFlooding episodes occur frequently in the Colombian Caribbean and cause damage to coastal settlements. However, there is little knowledge about these episodes and about how changes in associated variables affect coastal flooding. This paper presents the results obtained from analyzing the temporal variability of flood levels in Moñitos-Córdoba on the Colombian Caribbean coast, as well as the contribution their components make to different time scales. To achieve this, the total sea level (TSL) was estimated indirectly as the sum of the variables involved (sea level anomalies, astronomical tide, storm surge and wave runup). These variables were obtained by applying numerical and empirical modeling using satellite altimetry data, tidal modeled data and wind, waves and atmospheric pressure from reanalysis. Data Trends and contributions were analyzed using statistical methods, including variance analysis, exceedance distributions, linear regressions, Sen-Slope and the Mann Kendall test. The results indicate that the total sea level has a semi-annual cycle with its highest maximum levels in the months of December to March and its lowest maximum levels in the months of April and September. The total sea level variability in Moñitos is dominated by the runup component at monthly, intra-annual and inter-annual scales, while at longer-term timescales (2–7 years and greater) variability is dominated by the sea level anomaly. Runup is the greatest contributor to the total sea level, followed by the sea level anomaly in average conditions and the astronomical tide in extreme conditions. There was a trend of increasing total sea level, related to the trend in sea level anomaly, with a consequent increasing trend of frequency and magnitude of extreme sea levels. © 2021 Elsevier Ltdeng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85113808014&doi=10.1016%2fj.csr.2021.104489&partnerID=40&md5=c6f8d6a072eaffa47ad6c82cac555e78
dc.sourceContinental Shelf Research
dc.titleCostal sea level variability and extreme events in Moñitos, Cordoba, Colombian Caribbean Sea
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1016/j.csr.2021.104489
dc.subject.keywordCaribbean seaeng
dc.subject.keywordCoastal floodingeng
dc.subject.keywordENSOeng
dc.subject.keywordExtreme eventseng
dc.subject.keywordSea level variabilityeng
dc.subject.keywordWave run-upeng
dc.relation.citationvolume228
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationGenes, L.S., Universidad de Medellín, Magister en Ingeniería Urbana, Carrera 87 N° 30 – 65, Medellín, Colombia
dc.affiliationMontoya, R.D., Universidad de Medellín, Grupo de Investigación en ingeniería Civil GICI, Grupo de investigación en Calidad del agua y Modelación Hídrica GICAMH, Carrera 87 N° 30 – 65, Medellín, Colombia, Universidad Nacional de Colombia Sede Medellín, Grupo de Oceanografía e Ingeniería Costera (OCEANICOS), Carrera 80Na 65-223, Medellín, Colombia
dc.affiliationOsorio, A.F., Universidad Nacional de Colombia Sede Medellín, Grupo de Oceanografía e Ingeniería Costera (OCEANICOS), Carrera 80Na 65-223, Medellín, Colombia
dc.relation.referencesAlexander, M., Scott, J., The influence of ENSO on air-sea interaction in the Atlantic (2002) Geophys. Res. Lett., 29 (14). , 46-1
dc.relation.referencesAndrade, C.A., Thomas, Y.F., Lerma, A.N., Durand, P., Anselme, B., Coastal flooding hazard related to swell events in Cartagena de Indias, Colombia (2013) J. Coast Res., 29 (5), pp. 1126-1136
dc.relation.referencesAndrade-Amaya, C.A., The Circulation and Variability of the Colombian Basin in the Caribbean Sea (Doctoral Dissertation (2000), Ph. D. thesis University of Wales
dc.relation.referencesArns, A., Wahl, T., Dangendorf, S., Jensen, J., The impact of sea level rise on storm surge water levels in the northern part of the German Bight (2015) Coast Eng., 96, pp. 118-131
dc.relation.referencesAppendini, C.M., Urbano-Latorre, C.P., Figueroa, B., Dagua-Paz, C.J., Torres-Freyermuth, A., Salles, P., Wave energy potential assessment in the Caribbean Low Level Jet using wave hindcast information (2015) Appl. Energy, 137, pp. 375-384
dc.relation.referencesBattjes, J.A., Janssen, J.P.F.M., Energy loss and set-up due to breaking of random waves (1978) Coast Eng., 1978, pp. 569-587
dc.relation.referencesBarriopedro, D., Garcia-Herrar, R., Lionello, P., Pino, C., A discussion of the links between solar variability and high storm surge events in Venice (2010) J. Geophys. Res., 115
dc.relation.referencesBenavente, J., Del Río, L., Gracia, F.J., Martínez-del-Pozo, J.A., Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain) (2006) Continent. Shelf Res., 26 (9), pp. 1061-1076
dc.relation.referencesBernal, G., Osorio, A.F., Urrego, L., Peláez, D., Molina, E., Zea, S., Occurrence of energetic extreme oceanic events in the Colombian Caribbean coasts and some approaches to assess their impact on ecosystems (2016) J. Mar. Syst., 164, pp. 85-100
dc.relation.referencesBernal, G., Poveda, G., Roldán, P., Andrade, C., Patrones de variabilidad de las temperaturas superficiales del mar en la costa Caribe colombiana (2006) Rev. Acad. Colomb. Cienc, 30 (115), pp. 195-208
dc.relation.referencesBernier, N.B., Annual and Seasonal Extreme Sea Levels in the Northwest Atlantic: Hindcasts over the Last 40 Years and Projections for the Next Century (Ph.D. Thesis) (2005), Dalhousie University Halifax, NS, Canada
dc.relation.referencesBidlot, J.-R., Janssen, P.A.E.M., Abdalla, S., (2007) A Revised Formulation of Ocean Wave Dissipation and its Model Impact, 509. , ECMWF Technical Memorandum
dc.relation.referencesBidlot, J.-R., Janssen, P.A.E.M., Abdalla, S., A revised formulation for ocean wave dissipation in CY29R1. ECMWF Technical (2005) Memorandum, (1), pp. 1-35. , R60.9/JB/0
dc.relation.referencesBooij, N., Ris, R.C.Y., Holthuijsen, L.H., A third generation wave model for coastal regions, Part I, Model description and validation (1999) J. Geophys. Res., 104 (C4), pp. 7649-7666
dc.relation.referencesBowden, K.F., Physical Oceanography of Coastal Waters (1983), p. 302. , E. Horwood
dc.relation.referencesBreaker, L.C., Ruzmaikin, A., The 154-year record of sea level at San Francisco: extracting the long-term trend, recent changes, and other tidbits (2011) Clim. Dynam., 36 (3-4), pp. 545-559
dc.relation.referencesBreaker, L.C., Ruzmaikin, A., Estimating rates of acceleration based on the 157-year record of sea level from San Francisco, California, USA (2013) J. Coast Res., 29 (1), pp. 43-51
dc.relation.referencesBreilh, J.F., Bertin, X., Chaumillon, É., Giloy, N., Sauzeau, T., How frequent is storm-induced flooding in the central part of the Bay of Biscay? (2014) Global Planet. Change, 122, pp. 161-175
dc.relation.referencesCamus, P., Mendez, F.J., Medina, R., Tomas, A., Izaguirre, C., High resolution downscaled ocean waves (DOW) reanalysis in coastal areas (2013) Coast Eng., 72, pp. 56-68
dc.relation.referencesCao, A., Guo, Z., Qi, X., Li, P., He, H., Seasonal and nodal variations of predominant tidal constituents in the global ocean (2021) Continent. Shelf Res., 217
dc.relation.referencesCarrere, L., Lyard, F., Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing comparisons with observations (2003) Geophys. Res. Lett., 30 (6)
dc.relation.referencesCasas-Prat, M., Wanga, X.L., Swartb, N., CMIP5-based global waveclimate projections including the entire Arctic Ocean (2018) Ocean Model., 123, pp. 66-85
dc.relation.referencesCavaleri, L., Malanotte-Rizzoli, P., Wind wave prediction in shallow water: theory and applications (1981) J. Geophys. Res.: Oceans, 86 (C11), pp. 10961-10973
dc.relation.referencesCavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J.R., Breivik, Ø., Wave modelling in coastal and inner seas (2018) Prog. Oceanogr., 167, pp. 164-233
dc.relation.referencesCheon, S.-H., Suh, K.-D., Effect of sea level rise on nearshore significant waves and coastal structures (2016) Ocean. Eng., 114, pp. 280-289
dc.relation.referencesChelton, D.B., Enfield, D.B., Ocean signals in tide gauge records (1986) J. Geophys. Res.: Solid Earth, 91 (B9), pp. 9081-9098
dc.relation.referencesChen, G., Wang, Z., Qian, C., Lv, C., Han, Y., Seasonal-to-decadal modes of global sea level variability derived from merged altimeter data (2010) Rem. Sens. Environ., 114 (11), pp. 2524-2535
dc.relation.referencesChristie, E.K., Spencer, T., Owen, D., McIvor, A.L., Möller, I., Viavattene, C., Regional coastal flood risk assessment for a tidally dominant, natural coastal setting: North Norfolk, southern North Sea (2017) Coastal Engineering, , ISSN 0378-3839
dc.relation.referencesCid, A., Camus, P., Castanedo, S., Méndez, F.J., Medina, R., Global reconstructed daily surge levels from the 20th Century Reanalysis (1871–2010) (2017) Global Planet. Change, 148, pp. 9-21
dc.relation.referencesCipollini, P., Calafat, F.M., Jevrejeva, S., Melet, A., Prandi, P., Monitoring sea level in the coastal zone with satellite altimetry and tide gauges (2017) Integrative Study of the Mean Sea Level and Its Components, pp. 35-59. , Springer, Cham
dc.relation.referencesCorrea, I., Ríos, A., González, D., Toro, M., Ojeda, G., Restrepo, I., Erosión litoral entre Arboletes y Punta San Bernardo, Costa Caribe Colombiana (2007) Bol. Geol., 29 (2)
dc.relation.referencesDada, O.A., Almar, R., Oladapo, M.I., Recent coastal sea-level variations and flooding events in the Nigerian Transgressive Mud coast of Gulf of Guinea (2020) J. Afr. Earth Sci., 161, p. 103668
dc.relation.referencesDee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., The ERA Interim reanalysis: configuration and performance of the data assimilation system (2011) Q. J. R. Meteorol. Soc., 137 (656), pp. 553-597
dc.relation.referencesDel Río, L., Plomaritis, T., Benavente, J., Valladares, M., Ribera, P., Establishing storm thresholds for the Spanish Gulf of Cádiz coast (2012) Geomorphology, 143-144, pp. 13-23. , ISSN 0169-555X
dc.relation.referencesDevis-Morales, A., Montoya-Sánchez, R.A., Bernal, G., Osorio, A.F., Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications (2017) Appl. Ocean Res., 69, pp. 10-26
dc.relation.referencesDibarboure, G., Dorandeu, J., Le Traon, P.Y., Picot, N., SSALTO/DUACS: 15 years of precise and consistent multi-mission altimetry data (2006) Eur. Space Agency (Spec. Publ.) ESA SP, 614 (6), p. 6
dc.relation.referencesDodet, G., Melet, A., Ardhuin, F., The contribution of wind-generated waves to coastal sea-level changes (2019) Surv Geophys, 40, pp. 1563-1601
dc.relation.referencesDunning, T., Ertl, O., Computing Extremely Accurate Quantiles Using T-Digests. 2017 (2018), https://github.com/tdunning/t-digest, 7
dc.relation.referencesEgbert, G.D., Erofeeva, S.Y., Efficient inverse modeling of barotropic ocean tides (2002) J. Atmos. Ocean. Technol., 19 (2), pp. 183-204
dc.relation.referencesEldeberky, Y., Nonlinear Transformation of Wave Spectra in the Nearshore Zone (Ph. D. Thesis) (1996), Delft University of Technology, Department of Civil Engineering Netherlands
dc.relation.referencesEliot, M., Sea level variability influencing coastal flooding in the Swan River region, Western Australia (2012) Continent. Shelf Res., 33, pp. 14-28
dc.relation.referencesEnfield, D.B., Mayer, D.A., Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation (1997) J. Geophys. Res.: Oceans, 102, pp. 929-945
dc.relation.referencesFernández, V., Silva, R., Mendoza, E., Riedel, B., Coastal flood assessment due to extreme events at Ensenada, Baja California, Mexico (2018) Ocean Coast Manag., 165, pp. 319-333
dc.relation.referencesFu, Y., Zhou, X., Zhou, D., Li, J., Zhang, W., Estimation of sea level variability in the South China Sea from satellite altimetry and tide gauge data (2021) Adv. Space Res., 68 (2), pp. 523-533
dc.relation.referencesGourrion, J., Vandemark, D., Bailey, S., Chapron, B., Gommenginger, G.P., Challenor, P.G., Srokosz, M.A., A two-parameter wind speed algorithm for Ku-band altimeters (2002) J. Atmos. Ocean. Technol., 19 (12), pp. 2030-2048
dc.relation.referencesHakkou, M., Maanan, M., Belrhaba, T., Leone, F., Benmohammadi, A., Zourarah, B., Assess and mapping the flooding hazards using geospatial tools and empirical model along Kenitra coast, Morocco (2019) Ocean Coast Manag., 169, pp. 264-272
dc.relation.referencesHan, W., Stammer, D., Thompson, P., Ezer, T., Palanisamy, H., Zhang, X., Impacts of basin-scale climate modes on coastal sea level: a review (2019) Surv. Geophys., 40 (6), pp. 1493-1541
dc.relation.referencesHasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Measurements of wind-wave growth and swell decay during the joint North sea wave project (JONSWAP) (1973) Ergänzungsheft, pp. 8-12
dc.relation.referencesHasselmann, S., Hasselmann, K., Allender, J.H., Barnett, T.P., Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: parameterizations of the nonlinear energy transfer for application in wave models (1985) J. Phys. Oceanogr., 15 (11), pp. 1378-1391
dc.relation.referencesHunter, J.R., Church, J.A., White, N.J., Zhang, X., Towards a global regionally varying allowance for sea-level rise (2013) Ocean. Eng., 71, pp. 17-27
dc.relation.referencesHwang, P.A., Teague, W.J., Jacobs, G.A., Wang, D.W., A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region (1998) J. Geophys. Res.: Oceans, 103 (C5), pp. 10451-10468
dc.relation.referencesIdier, D., Bertin, X., Thompson, P., Pickering, M.D., Interactions between mean sea level, tide, surge, waves and flooding: mechanisms and contributions to sea level variations at the coast (2019) Surv. Geophys., 40 (6), pp. 1603-1630
dc.relation.referencesIbrahim, H.D., Sun, Y., Mechanism study of the 2010–2016 rapid rise of the Caribbean Sea level (2020) Global Planet. Change, p. 103219
dc.relation.referencesJanssen, P.A., Progress in ocean wave forecasting (2008) J. Comput. Phys., 22 (7), pp. 3572-3594
dc.relation.referencesJanssen, P.A., Wave-induced stress and the drag of air flow over sea waves (1989) J. Phys. Oceanogr., 19 (6), pp. 745-754
dc.relation.referencesJanssen, P.A., Quasi-linear theory of wind-wave generation applied to wave forecasting (1991) J. Phys. Oceanogr., 21 (11), pp. 1631-1642
dc.relation.referencesJevrejeva, S., Frederikse, T., Kopp, R.E., Le Cozannet, G., Jackson, L.P., van de Wal, R.S.W., Probabilistic sea level projections at the coast by 2100 (2019) Surv. Geophys., 40 (6), pp. 1673-1696
dc.relation.referencesJiang, L., Yin, Y., Cheng, X., Zhang, Z., Interannual variability of significant wave height in the northern South China Sea (2018) Aquat. Ecosys. Health Manag., 21 (1), pp. 82-92
dc.relation.referencesKaniewski, D., Marriner, N., Morhange, C., Faivre, S., Otto, T., Van Campo, E., Solar pacing of storm surges, coastal flooding and agricultural losses in the Central Mediterranean (2016) Sci. Rep., 6, p. 25197
dc.relation.referencesKendall, M.G., Rank Correlation Methods (1975), fourth ed. Charles Griffin London
dc.relation.referencesKeshta, N., Elshorbagy, A., Utilizing North American regional reanalysis for modeling soil moisture and evapotranspiration in reconstructed watersheds (2011) Phys. Chem. Earth, Parts A/B/C, 36 (1-4), pp. 31-41
dc.relation.referencesKim, S., Lee, H.S., Combined approach of empirical mode decomposition and artifical neural network for sea-level record analysis (2018) J. Coast Res., (85), pp. 1091-1095
dc.relation.referencesKjerfve, B., Tides of the Caribbean Sea (1981) J. Geophys. Res.: Oceans, 86 (C5), pp. 4243-4247
dc.relation.referencesKomen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P.A.E.M., Dynamics and Modelling of Ocean Waves (1994), Cambridge University Press Cambridge, UK
dc.relation.referencesKomen, G.J., Hasselmann, K., Hasselmann, K., On the existence of a fully developed wind-sea spectrum (1984) J. Phys. Oceanogr., 14 (8), pp. 1271-1285
dc.relation.referencesKristjansson, J.E., Staple, A., Kristansen, J., Kaas, E., A new look at possible connections between solar activity, clouds and climate (2002) Geophys. Res. Lett., 29 (23), pp. 2107-2110
dc.relation.referencesLambert, E., Rohmer, J., Le Cozannet, G., van de Wal, R., How waves slow down the amplification of extreme water levels due to sea-level rise (2019) AGU Fall Meeting 2019. AGU, , https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/536009
dc.relation.referencesLambert, E., Rohmer, J., Le Cozannet, G., van de Wal, R.S.W., Adaptation time to magnified flood hazards underestimated when derived from tide gauge records (2020) Environ. Res. Lett., 15 (7), p. 074015
dc.relation.referencesLe Cozannet, G., Rohmer, J., Cazenave, A., Idier, D., van De Wal, R., De Winter, R., Evaluating uncertainties of future marine flooding occurrence as sea-level rises (2015) Environ. Model. Software, 73, pp. 44-56
dc.relation.referencesLiu, W.C., Huang, W.C., Influences of sea level rise on tides and storm surges around the Taiwan coast (2019) Continent. Shelf Res., 173, pp. 56-72
dc.relation.referencesLi, J., Tan, W., Chen, M., Luo, F., Liu, Y., Fu, Q., Li, B., An extreme sea level event along the northwest coast of the South China sea in 2011–2012 (2020) Continent. Shelf Res., 196, p. 104073
dc.relation.referencesLiang, B., Gao, H., Shao, Z., Characteristics of global waves based on the third-generation wave model SWAN (2019) Mar. Struct., 64, pp. 35-53
dc.relation.referencesLosada, I.J., Reguero, B.G., Méndez, F.J., Castanedo, S., Abascal, A.J., Mínguez, R., Long-term changes in sea-level components in Latin America and the Caribbean (2013) Global Planet. Change, 104, pp. 34-50
dc.relation.referencesMaia, N.Z., Calliari, L.J., Nicolodi, J.L., Analytical model of sea level elevation during a storm: support for coastal flood risk assessment associated with cyclone passage (2016) Continent. Shelf Res., 124, pp. 23-34
dc.relation.referencesMann, H.B., Non-parametric tests against trend (1945) Econometrica, 13, pp. 163-171
dc.relation.referencesMartínez Gallo, J.C., Propuesta metodológica para la estimación de la cota de inundación de la zona costera del Caribe colombiano (2010), Universidad Nacional de Colombia Tesis de maestría
dc.relation.referencesMartínez-Asensio, A., Tsimplis, M.N., Calafat, F.M., Decadal variability of European sea level extremes in relation to the solar activity (2016) Geophys. Res. Lett., 43, pp. 11744-11750
dc.relation.referencesMelet, A., Almar, R., Meyssignac, B., What dominates sea level at the coast: a case study for the Gulf of Guinea (2016) Ocean Dynam., 66, p. 623
dc.relation.referencesMelet, A., Meyssignac, B., Almar, R., Le Cozannet, G., Under-estimated wave contribution to coastal sea-level rise (2018) Nat. Clim. Change, 8 (3), pp. 234-239
dc.relation.referencesMelet, A., Almar, R., Hemer, M., Le Cozannet, G., Meyssignac, B., Ruggiero, P., Contribution of wave setup to projected coastal sea level changes (2020) J. Geophys. Res.: Oceans, 125
dc.relation.referencesMenéndez, M., Woodworth, P.L., Changes in extreme high water levels based on a quasi-global tide-gauge data set (2010) J. Geophys. Res.: Oceans, 115 (C10)
dc.relation.referencesMentaschi, L., Vousdoukas, M.I., Voukouvalas, E., Dosio, A., Feyen, L., Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns (2017) Geophys. Res. Lett., 44, pp. 2416-2426
dc.relation.referencesMesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.C., Ebisuzaki, W., North American regional reanalysis (2006) Bull. Am. Meteorol. Soc., 87 (3), pp. 343-360
dc.relation.referencesMeyssignac, B., Cazenave, A., Sea level: a review of present-day and recent-past changes and variability (2012) J. Geodyn., 58, pp. 96-109
dc.relation.referencesMontoya, R.D., Osorio Arias, A.F., Montoya Jaramillo, L.J., Hernández, J.C., Interacción océano atmósfera en el mar caribe: Relación con los patrones de oleaje (2015), Sello Editorial de la Universidad de Medellín
dc.relation.referencesMontoya, R.D., Osorio, A.F., Methodology to correct wind speed during average wind conditions: application to the Caribbean Sea (2014) J. Atmos. Ocean. Technol., 31 (9), pp. 1922-1945
dc.relation.referencesMontoya, R.D., Menendez, M., Osorio, A.F., Exploring changes in Caribbean hurricane-induced wave heights (2018) Ocean. Eng., 163, pp. 126-135
dc.relation.referencesMontoya, R.D., Study of the interactions between large scale climate phenomena and waves in the Caribbean Sea: methodologies to correct wind speed during average and hurricane conditions for wave climate analysis (2013), p. 340. , (Ph.D. thesis) Univerisidad Nacional de Colombia
dc.relation.referencesMontoya-Sánchez, R.A., Devis-Morales, A., Bernal, G., Poveda, G., Seasonal and intraseasonal variability of active and quiescent upwelling events in the Guajira system, southern Caribbean Sea (2018) Continent. Shelf Res., 171, pp. 97-112
dc.relation.referencesMüller, M., Cherniawsky, J.Y., Foreman, M.G., von Storch, J.S., Seasonal variation of the M 2 tide (2014) Ocean Dynam., 64 (2), pp. 159-177
dc.relation.referencesNeelin, J.D., Battisti, D.S., Hirst, A.C., Jin, F.F., Wakata, Y., Yamagata, T., Zebiak, S.E., ENSO theory (1998) J. Geophys. Res.: Oceans, 103 (C7), pp. 14261-14290
dc.relation.referencesNicholls, R.J., Hanson, S.E., Lowe, J.A., Warrick, R.A., Lu, X., Long, A.J., Sea-level scenarios for evaluating coastal impacts (2014) Wiley Interdisciplinary Reviews: Climate Change, 5, pp. 129-150
dc.relation.referencesNicolae, A., Thomas, Y., Durand, P., Torres, R.R., Andrade, C., Sea-level variability from 1950 to 2000 and hazards linked to storm surge episodes in Bocagrande and Castillogrande peninsulas, Cartagena de Inidias, Colombia (2008) Boletin Cientifico CIOH, 26, pp. 72-85
dc.relation.referencesOrejarena-Rondón, A.F., Otero-Díaz, L.J., Restrepo, L., Camilo, J., Ramos De la Hoz, I.M., Marriaga-Rocha, L., Methodology for determining the mean and extreme sea level regimes (astronomical and meteorological tides) considering scarce records in microtidal zones: colombian Caribbean case (2018) Dyna, 85 (205), pp. 274-283
dc.relation.referencesOrejarena-Rondón, A.F., Sayol, J.M., Marcos, M., Otero, L., Restrepo, J.C., Hernández-Carrasco, I., Orfila, A., Coastal impacts driven by sea-level rise in Cartagena de Indias (2019) Frontiers in Marine Science, 6, p. 614
dc.relation.referencesOrtega, S., Osorio, A.F., Agudelo, P., Estimation of the wave power resource in the Caribbean Sea in areas with scarce instrumentation. Case study: Isla Fuerte, Colombia (2013) Renew. Energy, 57, pp. 240-248
dc.relation.referencesOrtiz, J.C., Salcedo, B., Otero, L.J., Investigating the collapse of the Puerto Colombia pier (Colombian Caribbean Coast) in March 2009: methodology for the reconstruction of extreme events and the evaluation of their impact on the coastal infrastructure (2014) J. Coast Res., 30 (2), pp. 291-300. , Coconut Creek (Florida), ISSN 0749- 0208
dc.relation.referencesOrtiz-Royero, J.C., Otero, L.J., Restrepo, J.C., Ruiz, J., Cadena, M., Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events (2013) Nat. Hazards Earth Syst. Sci., 13 (11), p. 2797
dc.relation.referencesOsorio, A.F., Montoya, R.D., Ortiz, J.C., Peláez, D., Construction of synthetic ocean wave series along the Colombian Caribbean Coast: a wave climate analysis (2016) Appl. Ocean Res., 56, pp. 119-131
dc.relation.referencesOsorio, A.F., Peláez-Zapata, D.S., Guerrero-Gallego, J., Álvarez-Silva, O., Osorio-Cano, J.D., Toro, F.M., Giraldo, A., Hidrodinámica aplicada a la gestión y la conservación de ecosistemas marinos y costeros: Isla Gorgona, Océano Pacífico Colombiano (2014) Rev. Biol. Trop., 62 (1)
dc.relation.referencesOtero, L.J., Ortiz-Royero, J.C., Ruiz-Merchan, J.K., Higgins, A.E., Henriquez, S.A., Storms or cold fronts: what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region? (2016) Nat. Hazards Earth Syst. Sci., 16 (2), p. 391
dc.relation.referencesPalmer, K., Watson, C., Fischer, A., Non-linear interactions between sea-level rise, tides, and geomorphic change in the Tamar Estuary, Australia. Estuarine (2019) Coastal and Shelf Science, 225, p. 106247
dc.relation.referencesPawlowicz, R., Beardsley, B., Lentz, S., Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE (2002) Comput. Geosci., 28 (8), pp. 929-937
dc.relation.referencesPickering, M.D., Horsburgh, K.J., Blundell, J.R., Hirschi, J.M., Nicholls, R.J., Verlaan, M., Wells, N.C., The impact of future sea-level rise on the global tides (2017) Continent. Shelf Res., 142, pp. 50-68
dc.relation.referencesPoli, P., List of Observations Assimilated in ERA-40 and ERA-Interim (2010), ERA Report Series 4 ECMWF Reading United Kingdom
dc.relation.referencesPoveda, G., Mesa, O., La corriente de chorro superficial del Oeste (“del Chocó”) y otras dos corrientes de chorro en Colombia: climatología y variabilidad durante las fases del ENSO” (1999) Revista Académica Colombiana de Ciencia, 23 (89), pp. 517-528
dc.relation.referencesPugh, D.T., Tides, surges and mean sea level (1987) A Handbook for Engineers and Scientists, p. 472. , John Wiley&Sons Ltd. New York
dc.relation.referencesPujol, M.I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., Picot, N., DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years (2016) Ocean Sci., 12 (5)
dc.relation.referencesRaji, O., Del Río, L., Gracia, F.J., Benavente, J., The use of LIDAR data for mapping coastal flooding hazard related to storms in Cádiz Bay (SW Spain) (2011) J. Coast Res., pp. 1881-1885
dc.relation.referencesRangel-Buitrago, N., Posada-Posada, B., Geomorphology and erosive processes in the North coast of the of Cordoba, municipality – Colombia Caribbean (sector of paso Nuevo -Cristo Rey) (2005) Bol. Invest. Mar. Costeras, 34, pp. 101-119. , (In Spanish)
dc.relation.referencesReguero, B.G., Méndez, F.J., Losada, I.J., Variability of multivariate wave climate in Latin America and the Caribbean (2013) Global Planet. Change, 100, pp. 70-84
dc.relation.referencesRizzo, A., Aucelli, P.P.C., Gracia, F.J., Anfuso, G., A novelty coastal susceptibility assessment method: application to Valdelagrana area (SW Spain) (2017) J. Coast Conserv., 22 (5), pp. 973-987
dc.relation.referencesRueda, A., Vitousek, S., Camus, P., Tomás, A., Espejo, A., Losada, I.J., A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing (2017) Sci. Rep., 7 (1), pp. 1-8
dc.relation.referencesRueda-Roa, D.T., Muller-Karger, F.E., The southern Caribbean upwelling system: sea surface temperature, wind forcing and chlorophyll concentration patterns (2013) Deep Sea Res. Oceanogr. Res. Pap., 78, pp. 102-114
dc.relation.referencesRuiz-Etcheverry, L., Saraceno, M., Piola, A.R., Valladeau, G., Möller, O.O., A comparison of the annual cycle of sea level in coastal areas from gridded satellite altimetry and tide gauges (2015) Continent. Shelf Res., 92, pp. 87-97
dc.relation.referencesRuiz, M.A., Variability Colombia Basin (Caribbean Sea) Associated with El Nino- Southern Oscillation, Trade Winds and Local Processes (2011), Thesis submitted as partial requirement for the degree of: Doctor of Engineering – Water Resources [in Spanish]
dc.relation.referencesRuiz-Ochoa, M., Bernal, G., Seasonal and interannual variability of the wind in the NCEP reanalysis data/NCAR in Colombia Basin, Caribbean Sea (2009) Adv. Water Resour., 20, pp. 7-20. , ([In spanish])
dc.relation.referencesSammari, C., Koutitonsky, V.G., Moussa, M., Sea level variability and tidal resonance in the Gulf of Gabes, Tunisia (2006) Continent. Shelf Res., 26 (3), pp. 338-350
dc.relation.referencesSantoso, A., Mcphaden, M.J., Cai, W., The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño (2017) Rev. Geophys., 55 (4), pp. 1079-1129
dc.relation.referencesSallenger, A.H., Storm impact scale for barrier islands (2000) J. Coast Res., 16 (3), pp. 890-895
dc.relation.referencesSen, P.K., Estimates of the regression coefficient based on Kendall's tau (1968) American Statistical Association Journal, 63 (324), pp. 1379-1389
dc.relation.referencesSerafin, K.A., Ruggiero, P., Simulating extreme total water levels using a time-dependent, extreme value approach (2014) J. Geophys. Res. Oceans, 119, pp. 6305-6329
dc.relation.referencesSerafin, K.A., Ruggiero, P., Stockdon, H.F., The relative contribution of waves, tides, and nontidal residuals to extreme total water levels on US West Coast sandy beaches (2017) Geophys. Res. Lett., 44 (4), pp. 1839-1847
dc.relation.referencesSerpa, C.G., Romeu, M.A.R., Fontoura, J.A.S., Calliari, L.J., Melo, E., Albuquerque, M.D.G., Study of the responsible factors for the closure of an intermittent washout during a storm surge, Rio Grande do Sul, Brazil (2011) J. Coast Res., pp. 2068-2073
dc.relation.referencesShaftel, H.J.A., Jackson, R., Callery, S., Global Climate Change. Vital Signs of the Planet (2018), https://climate.nasa.gov/, California Institute of Technology Pasadena, CA The Earth Science Communications Team at NASA's Jet Propulsion Laboratory
dc.relation.referencesSilva, S.F., Martinho, M., Capitão, R., Reis, T., Fortes, C.J., Ferreira, J.C., An index-based method for coastal-flood risk assessment in low-lying areas (Costa de Caparica, Portugal) (2017) Ocean Coast Manag., 144, pp. 90-104
dc.relation.referencesSpada, G., Galassi, G., Olivieri, M., A study of the longest tide gauge sea-level record in Greenland (Nuuk/Godthab, 1958–2002) (2014) Global Planet. Change, 118, pp. 42-51
dc.relation.referencesStammer, D., Cazenave, A., Ponte, R.M., Tamisiea, M.E., Causes for contemporary regional sea level changes (2013) Annual review of marine science, 5, pp. 21-46
dc.relation.referencesStockdon, H.F., Holman, R.A., Howd, P.A., Sallenger, A.H., Jr., Empirical parameterization of setup, swash, and runup (2006) Coast Eng., 53 (7), pp. 573-588
dc.relation.referencesStopa, J.E., Cheung, K.F., Intercomparison of wind and wave data from the ECMWF reanalysis Interim and the NCEP climate forecast system reanalysis (2014) Ocean Model., 75, pp. 65-83
dc.relation.referencesStopa, J.E., Cheung, K.F., Periodicity and patterns of ocean wind and wave climate (2014) J. Geophys. Res. Oceans, 119, pp. 5563-5584
dc.relation.referencesStopa, J.E., Cheung, K.F., Tolman, H.L., Chawla, A., Patterns and cycles in the climate forecast system reanalysis wind and wave data (2013) Ocean Model., 70, pp. 207-220
dc.relation.referencesSWAN Scientific and Technical Documentation. SWAN Cycle III Version 40.91A (2012), Delft University of Technology Technical Documentation, Delft, The Netherlands
dc.relation.referencesThomas, Y.F., Nicolae-Lerma, A., Posada, B.O.P., Atlas climatológico del mar Caribe colombiano (2012), INVEMAR-Instituto de Investigaciones Marinas y Costeras" José Benito de Vives De Andréis
dc.relation.referencesTorres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P., May). A complete ensemble empirical mode decomposition with adaptive noise (2011) 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4144-4147. , IEEE
dc.relation.referencesTorres, R.R., Tsimplis, M.N., Seasonal sea level cycle in the Caribbean Sea (2012) J. Geophys. Res.: Oceans, 117 (C7)
dc.relation.referencesTorres, R.R., Tsimplis, M.N., Sea-level trends and interannual variability in the Caribbean Sea (2013) J. Geophys. Res.: Oceans, 118 (6), pp. 2934-2947
dc.relation.referencesTorres, R.R., Tsimplis, M.N., sea Level extremes in the Caribbean Sea (2014) J. Geophys. Res.: Oceans, 119 (8), pp. 4714-4731
dc.relation.referencesUSACE, U., Army Corps of Engineers 2003. Coastal Engineering Manual, Part. V. Coastal and Hydraulics Lab (2002), US Army Engineer Research and Development Center Vicksburg, Mississippi, USA
dc.relation.referencesValle-Levinson, A., Dutton, A., Martin, J.B., Spatial and temporal variability of sea level rise hot spots over the eastern United States (2017) Geophys. Res. Lett., 44 (15), pp. 7876-7882
dc.relation.referencesValle-Levinson, A., Martin, J.B., Solar activity and lunar precessions influence extreme sea-level variability in the U.S. Atlantic and Gulf of Mexico coasts (2020) Geophys. Res. Lett., 47
dc.relation.referencesValle-Rodríguez, J., Trasviña-Castro, A., Sea level anomaly measurements from satellite coastal altimetry and tide gauges at the entrance of the Gulf of California (2020) Adv. Space Res., 66 (7), pp. 1593-1608
dc.relation.referencesVega, M.J., Alvarez-Silva, O., Restrepo, J.C., Ortiz, J.C., Otero, L.J., Interannual variability of wave climate in the Caribbean Sea (2020) Ocean Dynam., 70, pp. 965-976
dc.relation.referencesVillatoro, M., Silva, R., Méndez, F.J., Zanuttigh, B., Pan, S., Trifonova, E., An approach to assess flooding and erosion risk for open beaches in a changing climate (2014) Coast Eng., 87, pp. 50-76
dc.relation.referencesVorobiev, V.N., Smirnov, N.P., Obwaja Okeanologija [General Oceanography], Part. 2, Dinamicheskie Processy [Dynamic Processes] (1999), p. 230. , RGGMU Saint Petersburg
dc.relation.referencesWang, C., Variability of the Caribbean low-level jet and its relations to climate (2007) Clim. Dynam., 29 (2007), pp. 411-422
dc.relation.referencesWadey, M., Brown, S., Nicholls, R.J., Haigh, I., Coastal flooding in the Maldives: an assessment of historic events and their implications (2017) Nat. Hazards, 89 (1), pp. 131-159
dc.relation.referencesWahl, T., Calafat, F.M., Luther, M.E., Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century (2014) Geophys. Res. Lett., 41 (2), pp. 491-498
dc.relation.referencesWang, L., Li, Q., Mao, X.Z., Bi, H., Yin, P., Interannual Sea level variability in the pearl river Estuary and its response to El Niño–southern oscillation (2018) Global Planet. Change, 162, pp. 163-174
dc.relation.referencesWang, X., Wang, X., Zhai, J., Li, X., Huang, H., Li, C., Improvement to flooding risk assessment of storm surges by residual interpolation in the coastal areas of Guangdong Province, China (2017) Quat. Int., 453, pp. 1-14
dc.relation.referencesWiedemann, H.U., Reconnaissance of the Ciénaga Grande de Santa Marta, Colombia: physical parameters and geological history (1973) Mitt. Inst. Colombo-Alemán Invest. Cient, 7, pp. 85-119
dc.relation.referencesWoodworth, P.L., Melet, A., Marcos, M., Forcing factors affecting sea level changes at the coast (2019) Surv. Geophys., 40, pp. 1351-1397
dc.relation.referencesWu, Z., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method (2009) Adv. Adapt. Data Anal., 1 (1), pp. 1-41
dc.relation.referencesWuxi, Q., Li, J., Nie, B., Effects of tide-surge interaction and wave set-up/set-down on surge: case studies of tropical cyclones landing China's Zhe-Min coast (2018) Theoretical and Applied Mechanics Letters, 8 (3), pp. 153-159
dc.relation.referencesYin, J., Yu, D., Lin, N., Wilby, R.L., Evaluating the cascading impacts of sea level rise and coastal flooding on emergency response spatial accessibility in Lower Manhattan, New York City (2017) J. Hydrol., 555, pp. 648-658
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record