Show simple item record

dc.contributor.authorManrique-Suárez V
dc.contributor.authorMacaya L
dc.contributor.authorContreras M.A
dc.contributor.authorParra N
dc.contributor.authorMaura R
dc.contributor.authorGonzález A
dc.contributor.authorToledo J.R
dc.contributor.authorSánchez O.
dc.date.accessioned2022-09-14T14:33:36Z
dc.date.available2022-09-14T14:33:36Z
dc.date.created2021
dc.identifier.issn8873585
dc.identifier.urihttp://hdl.handle.net/11407/7423
dc.descriptionTumor necrosis factor-alpha (TNFα) inhibitors could prevent neurological disorders systemically, but their design generally relies on molecules unable to cross the blood–brain barrier (BBB). This research was aimed to design and characterize a novel TNFα inhibitor based on the angiopeptide-2 as a BBB shuttle molecule fused to the extracellular domain of human TNFα receptor 2 and a mutated vascular endothelial growth factor (VEGF) dimerization domain. This new chimeric protein (MTV) would be able to trigger receptor-mediated transcytosis across the BBB via low-density lipoprotein receptor-related protein-1 (LRP-1) and inhibit the cytotoxic effect of TNFα more efficiently because of its dimeric structure. Stably transformed CHO cells successfully expressed MTV, and its purification by Immobilized-Metal Affinity Chromatography (IMAC) rendered high purity degree. Mutated VEGF domain included in MTV did not show cell proliferation or angiogenic activities measured by scratch and aortic ring assays, which corroborate that the function of this domain is restricted to dimerization. The pairs MTV-TNFα (Kd 279 ± 40.9 nM) and MTV-LRP1 (Kd 399 ± 50.5 nM) showed high affinity by microscale thermophoresis, and a significant increase in cell survival was observed after blocking TNFα with MTV in a cell cytotoxicity assay. Also, the antibody staining in CHOK1 and bEnd3 cells demonstrated the adhesion of MTV to the LRP1 receptor located in the cell membrane. These results provide compelling evidence for the proper functioning of the three main domains of MTV individually, which encourage us to continue the research with this new molecule as a potential candidate for the systemic treatment of neurological disorders. © 2021 Wiley Periodicals LLC.eng
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85110537947&doi=10.1002%2fprot.26173&partnerID=40&md5=3f574b27f0643066ae2dd66a1f8d6bb7
dc.sourceProteins: Structure, Function and Bioinformatics
dc.titleDesign and characterization of a novel dimeric blood–brain barrier penetrating TNFα inhibitor
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1002/prot.26173
dc.subject.keywordBlood–brain barriereng
dc.subject.keywordChimeric proteineng
dc.subject.keywordNeurological disordereng
dc.subject.keywordTNFαeng
dc.relation.citationvolume89
dc.relation.citationissue11
dc.relation.citationstartpage1508
dc.relation.citationendpage1521
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationManrique-Suárez, V., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
dc.affiliationMacaya, L., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
dc.affiliationContreras, M.A., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
dc.affiliationParra, N., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
dc.affiliationMaura, R., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
dc.affiliationGonzález, A., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile, Faculty of Basic Sciences, University of Medellin, Medellin, Colombia
dc.affiliationToledo, J.R., Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Science, Universidad de Concepción, Concepcion, Chile, Center of Biotechnology and Biomedicine Spa, Concepción, Chile
dc.affiliationSánchez, O., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile, Center of Biotechnology and Biomedicine Spa, Concepción, Chile
dc.relation.referencesCarswell, E.A., Old, L.J., Kassel, R.L., Green, S., Fiore, N., Williamson, B., An endotoxin-induced serum factor that causes necrosis of tumors (1975) Proc Natl Acad Sci U S A, 72 (9), pp. 3666-3670
dc.relation.referencesCabal-Hierro, L., Lazo, P.S., Signal transduction by tumor necrosis factor receptors (2012) Cell Signal, 24 (6), pp. 1297-1305
dc.relation.referencesBradley, J.R., TNF-mediated inflammatory disease (2008) J Pathol, 214 (2), pp. 149-160
dc.relation.referencesFeuerstein, G.Z., Liu, T., Barone, F.C., Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha (1994) Cerebrovasc Brain Metab Rev, 6 (4), pp. 341-360
dc.relation.referencesLiu, T., Clark, R.K., McDonnell, P.C., Tumor necrosis factor-alpha expression in ischemic neurons (1994) Stroke, 25 (7), pp. 1481-1488
dc.relation.referencesGoodman, J.C., Robertson, C.S., Grossman, R.G., Narayan, R.K., Elevation of tumor necrosis factor in head injury (1990) J Neuroimmunol, 30 (2-3), pp. 213-217
dc.relation.referencesRaine, C.S., Bonetti, B., Cannella, B., Multiple sclerosis: expression of molecules of the tumor necrosis factor ligand and receptor families in relationship to the demyelinated plaque (1998) Rev Neurol (Paris), 154 (8-9), pp. 577-585
dc.relation.referencesTarkowski, E., Andreasen, N., Tarkowski, A., Blennow, K., Intrathecal inflammation precedes development of Alzheimer's disease (2003) J Neurol Neurosurg Psychiatry, 74 (9), pp. 1200-1205
dc.relation.referencesAlvarez, A., Cacabelos, R., Sanpedro, C., Garcia-Fantini, M., Aleixandre, M., Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease (2007) Neurobiol Aging, 28 (4), pp. 533-536
dc.relation.referencesBoka, G., Anglade, P., Wallach, D., Javoy-Agid, F., Agid, Y., Hirsch, E.C., Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease (1994) Neurosci Lett, 172 (1-2), pp. 151-154
dc.relation.referencesMogi, M., Togari, A., Kondo, T., Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain (2000) J Neural Transm (Vienna), 107 (3), pp. 335-341
dc.relation.referencesBessler, H., Djaldetti, R., Salman, H., Bergman, M., Djaldetti, M., IL-1 beta, IL-2, IL-6 and TNF-alpha production by peripheral blood mononuclear cells from patients with Parkinson's disease (1999) Biomed Pharmacother, 53 (3), pp. 141-145
dc.relation.referencesFrankola, K.A., Greig, N.H., Luo, W., Tweedie, D., Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases (2011) CNS Neurol Disord Drug Targets, 10 (3), pp. 391-403
dc.relation.referencesStellwagen, D., Malenka, R.C., Synaptic scaling mediated by glial TNF-alpha (2006) Nature, 440 (7087), pp. 1054-1059
dc.relation.referencesTancredi, V., D'Arcangelo, G., Grassi, F., Tumor necrosis factor alters synaptic transmission in rat hippocampal slices (1992) Neurosci Lett, 146 (2), pp. 176-178
dc.relation.referencesAlbensi, B.C., Mattson, M.P., Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity (2000) Synapse, 35 (2), pp. 151-159
dc.relation.referencesDoll, D.N., Rellick, S.L., Barr, T.L., Ren, X., Simpkins, J.W., Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity (2015) J Neurochem, 132 (4), pp. 443-451
dc.relation.referencesOlmos, G., Llado, J., Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity (2014) Mediators Inflamm, 2014, p. 861231
dc.relation.referencesTakeuchi, H., Jin, S., Wang, J., Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner (2006) J Biol Chem, 281 (30), pp. 21362-21368
dc.relation.referencesYe, L., Huang, Y., Zhao, L., IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase (2013) J Neurochem, 125 (6), pp. 897-908
dc.relation.referencesSitcheran, R., Gupta, P., Fisher, P.B., Baldwin, A.S., Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression (2005) EMBO J, 24 (3), pp. 510-520
dc.relation.referencesMeroni, P.L., Valesini, G., Tumour necrosis factor alpha antagonists in the treatment of rheumatoid arthritis: an immunological perspective (2014) BioDrugs, 28, pp. S5-S13
dc.relation.referencesLi, P., Zheng, Y., Chen, X., Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics (2017) Front Pharmacol, 8, p. 460
dc.relation.referencesMcAlpine, F.E., Lee, J.K., Harms, A.S., Inhibition of soluble TNF signaling in a mouse model of Alzheimer's disease prevents pre-plaque amyloid-associated neuropathology (2009) Neurobiol Dis, 34 (1), pp. 163-177
dc.relation.referencesShi, J.Q., Shen, W., Chen, J., Anti-TNF-alpha reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains (2011) Brain Res, 1368, pp. 239-247
dc.relation.referencesShi, J.Q., Wang, B.R., Jiang, W.W., Cognitive improvement with intrathecal administration of infliximab in a woman with Alzheimer's disease (2011) J Am Geriatr Soc, 59 (6), pp. 1142-1144
dc.relation.referencesKim, D.H., Choi, S.M., Jho, J., Infliximab ameliorates AD-associated object recognition memory impairment (2016) Behav Brain Res, 311, pp. 384-391
dc.relation.referencesTobinick, E., Perispinal etanercept for treatment of Alzheimer's disease (2007) Curr Alzheimer Res, 4 (5), pp. 550-552
dc.relation.referencesTobinick, E., Deciphering the physiology underlying the rapid clinical effects of perispinal etanercept in Alzheimer's disease (2012) Curr Alzheimer Res, 9 (1), pp. 99-109
dc.relation.referencesPardridge, W.M., Boado, R.J., Reengineering biopharmaceuticals for targeted delivery across the blood–brain barrier (2012) Methods Enzymol, 503, pp. 269-292
dc.relation.referencesShibata, M., Yamada, S., Kumar, S.R., Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier (2000) J Clin Invest, 106 (12), pp. 1489-1499
dc.relation.referencesDeane, R., Sagare, A., Hamm, K., apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain (2008) J Clin Invest, 118 (12), pp. 4002-4013
dc.relation.referencesDemeule, M., Currie, J.C., Bertrand, Y., Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2 (2008) J Neurochem, 106 (4), pp. 1534-1544
dc.relation.referencesZhang, W., Liu, Q.Y., Haqqani, A.S., Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human (2020) Fluids Barriers CNS, 17 (1), p. 47
dc.relation.referencesDemeule, M., Regina, A., Che, C., Identification and design of peptides as a new drug delivery system for the brain (2008) J Pharmacol Exp Ther, 324 (3), pp. 1064-1072
dc.relation.referencesKe, W., Shao, K., Huang, R., Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer (2009) Biomaterials, 30 (36), pp. 6976-6985
dc.relation.referencesO'Sullivan, C.C., Lindenberg, M., Bryla, C., ANG1005 for breast cancer brain metastases: correlation between (18)F-FLT-PET after first cycle and MRI in response assessment (2016) Breast Cancer Res Treat, 160 (1), pp. 51-59
dc.relation.referencesGoffe, B., Cather, J.C., Etanercept: an overview (2003) J Am Acad Dermatol, 49 (2), pp. S105-S111
dc.relation.referencesMuller, Y.A., Christinger, H.W., Keyt, B.A., de Vos, A.M., The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 a resolution: multiple copy flexibility and receptor binding (1997) Structure, 5 (10), pp. 1325-1338
dc.relation.referencesIyer, S., Acharya, K.R., Tying the knot: the cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines (2011) FEBS J, 278 (22), pp. 4304-4322
dc.relation.referencesMukai, Y., Nakamura, T., Yoshikawa, M., Solution of the structure of the TNF-TNFR2 complex (2010) Sci Signal, 3 (148)
dc.relation.referencesKeyt, B.A., Nguyen, H.V., Berleau, L.T., Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis (1996) J Biol Chem, 271 (10), pp. 5638-5646
dc.relation.referencesDehouck, Y., Kwasigroch, J.M., Rooman, M., Gilis, D., BeAtMuSiC: prediction of changes in protein-protein binding affinity on mutations (2013) Nucleic Acids Res, 41, pp. W333-W339
dc.relation.referencesThorn, K.S., Bogan, A.A., ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions (2001) Bioinformatics, 17 (3), pp. 284-285
dc.relation.referencesBarlow, K.A., Conchúir, S.Ó., Thompson, S., Rosetta ensemble-based estimation of changes in protein-protein binding affinity upon mutation (2018) J Phys Chem B, 122 (21), pp. 5389-5399
dc.relation.referencesSali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J Mol Biol, 234 (3), pp. 779-815
dc.relation.referencesDeLano, W.L., (2002) PyMOL: an open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, (40), p. 11
dc.relation.referencesBravo, F.E., Parra, N.C., Camacho, F., Fluorescence-assisted sequential insertion of transgenes (FASIT): an approach for increasing specific productivity in mammalian cells (2020) Sci Rep, 10 (1), p. 12840
dc.relation.referencesLaemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227 (5259), pp. 680-685
dc.relation.referencesShiau, M.Y., Chiou, H.L., Lee, Y.L., Kuo, T.M., Chang, Y.H., Establishment of a consistent L929 bioassay system for TNF-alpha quantitation to evaluate the effect of lipopolysaccharide, phytomitogens and cytodifferentiation agents on cytotoxicity of TNF-alpha secreted by adherent human mononuclear cells (2001) Mediators Inflamm, 10 (4), pp. 199-208
dc.relation.referencesContreras, M.A., Macaya, L., Neira, P., New insights on the interaction mechanism of rhTNFalpha with its antagonists adalimumab and Etanercept (2020) Biochem J, 477 (17), pp. 3299-3311
dc.relation.referencesMosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Methods, 65 (1-2), pp. 55-63
dc.relation.referencesNicosia, R.F., Ottinetti, A., Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro (1990) Lab Invest, 63 (1), pp. 115-122
dc.relation.referencesParra, N.C., Mansilla, R., Aedo, G., Expression and characterization of human vascular endothelial growth factor produced in SiHa cells transduced with adenoviral vector (2019) Protein J, 38 (6), pp. 693-703
dc.relation.referencesLiang, C.C., Park, A.Y., Guan, J.L., In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro (2007) Nat Protoc, 2 (2), pp. 329-333
dc.relation.referencesChen, X., Zaro, J.L., Shen, W.C., Fusion protein linkers: property, design and functionality (2013) Adv Drug Deliv Rev, 65 (10), pp. 1357-1369
dc.relation.referencesVercammen, D., Beyaert, R., Denecker, G., Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor (1998) J Exp Med, 187 (9), pp. 1477-1485
dc.relation.referencesStorck, S.E., Meister, S., Nahrath, J., Endothelial LRP1 transports amyloid-beta(1-42) across the blood–brain barrier (2016) J Clin Invest, 126 (1), pp. 123-136
dc.relation.referencesBrown, R.C., Morris, A.P., O'Neil, R.G., Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells (2007) Brain Res, 1130 (1), pp. 17-30
dc.relation.referencesLopetuso, L.R., Gerardi, V., Papa, V., Can we predict the efficacy of anti-TNF-alpha agents? (2017) Int J Mol Sci, 18 (9), pp. 1-17
dc.relation.referencesGrossi, V., Gulli, F., Infantino, M., The laboratory role in anti-TNF biological therapy era (2020) Immunol Invest, 49 (3), pp. 317-332
dc.relation.referencesCooper, G.S., Bynum, M.L., Somers, E.C., Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases (2009) J Autoimmun, 33 (3-4), pp. 197-207
dc.relation.referencesBragazzi, N.L., Watad, A., Brigo, F., Adawi, M., Amital, H., Shoenfeld, Y., Public health awareness of autoimmune diseases after the death of a celebrity (2017) Clin Rheumatol, 36 (8), pp. 1911-1917
dc.relation.referencesO'Connell, J., Porter, J., Kroeplien, B., Small molecules that inhibit TNF signalling by stabilising an asymmetric form of the trimer (2019) Nat Commun, 10 (1), p. 5795
dc.relation.referencesFischer, R., Kontermann, R.E., Maier, O., Targeting sTNF/TNFR1 signaling as a new therapeutic strategy (2015) Antibodies, 4 (1), pp. 48-70
dc.relation.referencesChang, R., Knox, J., Chang, J., Blood–brain barrier penetrating biologic TNF-alpha inhibitor for Alzheimer's disease (2017) Mol Pharm, 14 (7), pp. 2340-2349
dc.relation.references(1999) TNF neutralization in MS. Results of a randomized, placebo-controlled multicenter study, 53 (3), p. 457
dc.relation.referencesEconomides, A.N., Carpenter, L.R., Rudge, J.S., Cytokine traps: multi-component, high-affinity blockers of cytokine action (2003) Nat Med, 9 (1), pp. 47-52
dc.relation.referencesDembic, Z., Chapter 1—Introduction—common features about cytokines (2015) The Cytokines of the Immune System, pp. 1-16. , Dembic Z, ed., Cambridge, MA, Academic Press
dc.relation.referencesMoreland, L.W., Baumgartner, S.W., Schiff, M.H., Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein (1997) N Engl J Med, 337 (3), pp. 141-147
dc.relation.referencesMurray, K.M., Dahl, S.L., Recombinant human tumor necrosis factor receptor (p75) Fc fusion protein (TNFR:fc) in rheumatoid arthritis (1997) Ann Pharmacother, 31 (11), pp. 1335-1338
dc.relation.referencesMohler, K.M., Torrance, D.S., Smith, C.A., Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists (1993) J Immunol, 151 (3), pp. 1548-1561
dc.relation.referencesGautier, B., Miteva, M.A., Goncalves, V., Targeting the proangiogenic VEGF-VEGFR protein-protein interface with drug-like compounds by in silico and in vitro screening (2011) Chem Biol, 18 (12), pp. 1631-1639
dc.relation.referencesFuh, G., Wu, P., Liang, W.C., Structure-function studies of two synthetic anti-vascular endothelial growth factor Fabs and comparison with the Avastin Fab (2006) J Biol Chem, 281 (10), pp. 6625-6631
dc.relation.referencesPan, B., Li, B., Russell, S.J., Tom, J.Y., Cochran, A.G., Fairbrother, W.J., Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor (2002) J Mol Biol, 316 (3), pp. 769-787
dc.relation.referencesHoyos-Ceballos, G.P., Ruozi, B., Ottonelli, I., PLGA-PEG-ANG-2 nanoparticles for blood–brain barrier crossing: proof-of-concept study (2020) Pharmaceutics, 12 (1), pp. 1-11
dc.relation.referencesWang, X., Xiong, Z., Liu, Z., Huang, X., Jiang, X., Angiopep-2/IP10-EGFRvIIIscFv modified nanoparticles and CTL synergistically inhibit malignant glioblastoma (2018) Sci Rep, 8 (1), p. 12827
dc.relation.referencesLi, Y., Zheng, X., Gong, M., Zhang, J., Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma (2016) Oncotarget, 7 (48), pp. 79401-79407
dc.relation.referencesEndo-Takahashi, Y., Ooaku, K., Ishida, K., Suzuki, R., Maruyama, K., Negishi, Y., Preparation of Angiopep-2 peptide-modified bubble liposomes for delivery to the brain (2016) Biol Pharm Bull, 39 (6), pp. 977-983
dc.relation.referencesKaymakcalan, Z., Sakorafas, P., Bose, S., Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor (2009) Clin Immunol, 131 (2), pp. 308-316
dc.relation.referencesScallon, B., Cai, A., Solowski, N., Binding and functional comparisons of two types of tumor necrosis factor antagonists (2002) J Pharmacol Exp Ther, 301 (2), pp. 418-426
dc.relation.referencesShealy, D.J., Cai, A., Staquet, K., Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor alpha (2010) MAbs, 2 (4), pp. 428-439
dc.relation.referencesvan Schie, K.A., Ooijevaar-de Heer, P., Dijk, L., Kruithof, S., Wolbink, G., Rispens, T., Therapeutic TNF inhibitors can differentially stabilize trimeric TNF by inhibiting monomer exchange (2016) Sci Rep, 6, p. 32747
dc.relation.referencesYang, T., Wang, Z., Wu, F., A variant of TNFR2-Fc fusion protein exhibits improved efficacy in treating experimental rheumatoid arthritis (2010) PLoS Comput Biol, 6 (2)
dc.relation.referencesZhou, Q.H., Sumbria, R., Hui, E.K., Lu, J.Z., Boado, R.J., Pardridge, W.M., Neuroprotection with a brain-penetrating biologic tumor necrosis factor inhibitor (2011) J Pharmacol Exp Ther, 339 (2), pp. 618-623
dc.relation.referencesChen, L., Zeng, D., Xu, N., Blood–brain barrier- and blood–brain tumor barrier-penetrating peptide-derived targeted therapeutics for glioma and malignant tumor brain metastases (2019) ACS Appl Mater Interfaces, 11 (45), pp. 41889-41897
dc.relation.referencesJerabek-Willemsen, M., Wienken, C.J., Braun, D., Baaske, P., Duhr, S., Molecular interaction studies using microscale thermophoresis (2011) Assay Drug Dev Technol, 9 (4), pp. 342-353
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record