dc.contributor.author | Henao M.V | |
dc.contributor.author | Marín L.M.G | |
dc.contributor.author | Villegas H.H.J | |
dc.contributor.author | Escobar C.C.P | |
dc.contributor.author | Cano L.M.S. | |
dc.date.accessioned | 2022-09-14T14:33:41Z | |
dc.date.available | 2022-09-14T14:33:41Z | |
dc.date.created | 2021 | |
dc.identifier.issn | 16469895 | |
dc.identifier.uri | http://hdl.handle.net/11407/7429 | |
dc.description | In the banking sector there are claims from customers, and as in the insurance sector, some correspond to cases of fraud. This work seeks to provide a literature review that allows an account of the data mining work that has been done on the subject. The analysis methodology is in place in the gathering of scientific information that has been investigated in the period 2015-2019. Two search equations are proposed and in a process of several phases the documents that are the object of study were selected. In the results, 13 relevant documents were found, which apply data mining techniques that have been grouped here into 5 categories, and 30 techniques, which have shown the best performance have been neural networks, decision trees and vector support machines. © 2021, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved. | eng |
dc.language.iso | spa | |
dc.publisher | Associacao Iberica de Sistemas e Tecnologias de Informacao | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124384631&partnerID=40&md5=8a5660a84c4ce8bb38c5bc49b57a4f5b | |
dc.source | RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao | |
dc.title | Detection of fraud due to misleading customer claims in banking entities through data mining techniques: a systematic review. [Detección de fraudes por reclamos engañosos de clientes en entidades bancarias a través de técnicas de minería de datos: una revisión sistemática.] | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería de Sistemas | |
dc.publisher.program | Ciencias Básicas | |
dc.type.spa | Artículo | |
dc.subject.keyword | Data mining | eng |
dc.subject.keyword | Fraud detection | eng |
dc.subject.keyword | Fraudulent claim | eng |
dc.subject.keyword | Systematic review | eng |
dc.relation.citationvolume | 2021 | |
dc.relation.citationissue | E43 | |
dc.relation.citationstartpage | 276 | |
dc.relation.citationendpage | 286 | |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Henao, M.V., Estudiante Maestría en Modelación y Ciencia Computacional, Universidad de Medellín, Antioquia, Colombia | |
dc.affiliation | Marín, L.M.G., Facultad de Ingenierías, Universidad de Medellín, Antioquia, Colombia | |
dc.affiliation | Villegas, H.H.J., Facultad de Ciencias Básicas, Universidad de Medellín, Antioquia, Colombia | |
dc.affiliation | Escobar, C.C.P., Facultad de Ciencias Básicas, Universidad de Medellín, Antioquia, Colombia | |
dc.affiliation | Cano, L.M.S., Grupo de Investigación Arkadius, Facultad de Ingenierías, Universidad de Medellín, Antioquia, Colombia | |
dc.relation.references | (2004) Aplicación de Basilea II: aspectos prácticos, , https://www.bis.org/publ/bcbs109esp.pdf, Press & Communications | |
dc.relation.references | Bauder, R.A., Khoshgoftaar, T.M., A novel method for fraudulent medicare claims detection from expected payment deviations (2013) 17° Conferencia Internacional sobre Reutilización e Integración de la Información, pp. 11-19 | |
dc.relation.references | Bauder, R.A., Khoshgoftaar, T.M., Richter, y A., Herland, M., Predicting medical provider specialties to detect anomalous insurance claims (2016) 28° Congreso Internacional de Herramientas con Inteligencia Artificial, pp. 784-790 | |
dc.relation.references | Bauder, R. A, Khoshgoftaar, T. M., A probabilistic programming approach for outlier detection in healthcare claims (2016) Conferencia internacional sobre aplicaciones y aprendizaje automático, pp. 347-354 | |
dc.relation.references | Bayerstadler, A., van Dijk, L., Winter, F., Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance (2016) Insurance Mathematics and Economic, 71, pp. 244-252. , http://dx.doi.org/10.1016/j.insmatheco.2016.09.013 | |
dc.relation.references | (2009) Ley 1328 de 2009, , http://www.secretariasenado.gov.co/senado/basedoc/ley_1328_2009.html | |
dc.relation.references | Johnson, M.E., Nagarur, N., Multi-stage methodology to detect health insurance claim fraud (2016) Health Care Management Science, 19 (3), pp. 249-260 | |
dc.relation.references | Joudaki, H., Raashidian, A., Minaei-Bigdoli, B., Mahmoodi, M., Geraili, B., Nasiri, M, Arab, M., Improving fraud and abuse detection in general physician claims: A data mining study (2016) Journal of health policy and Management, 5 (3), pp. 165-172 | |
dc.relation.references | Kose, I., Gokturk, M, Kilic, K., An interactive machine-learning-based electronic fraud and abuse detection system in healthcare insurance (2015) Applied Soft Computing, 36, pp. 283-299. , http://dx.doi.org/10.1016/j.asoc.2015.07.018 | |
dc.relation.references | Li, Y., Yan, C., Liu, W, Li, M., A principle component analysis-based random forest with the potential nearest neighbor method for automobile insurance fraud identification (2018) Applied Soft Computing, 70, pp. 1000-1009. , https://doi.org/10.1016/j.asoc.2017.07.027 | |
dc.relation.references | Nian, K., Zhang, H., Tayal, A., Coleman, T, Li, Y., Auto insurance fraud detection using unsupervised spectral ranking for anomaly (2016) The Journal of Financ Data Science, 2 (1), pp. 58-75. , http://dx.doi.org/10.1016/j.jfds.2016.03.001 | |
dc.relation.references | Rawte, V, Anuradha, G., (2015) Fraud detection in health insurance using data mining techniques Conferencia internacional sobre tecnología de la comunicación, la información y la informática, pp. 1-5 | |
dc.relation.references | (1993) Estatuto Orgánico del Sistema Financiero, , https://www.superfinanciera.gov.co/jsp/11301 | |
dc.relation.references | Subudhi, S., Panigrahi, S., Use of optimized Fuzzy C-Means clustering and supervised classifiers for automobile insurance fraud detection (2020) Journal of Computing and Information Sciencie, 32 (5), pp. 568-575. , https://doi.org/10.1016/j.jksuci.2017.09.010, 2020 | |
dc.relation.references | (2020), https://www.superfinanciera.gov.co/inicio/consumidor-financiero/informacion-general/quejas-contra-entidades-vigiladas/datos-estadisticos-cifras/informacion-estadistica-anual-11129 | |
dc.relation.references | Wang, Y., Xu, W., Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud (2018) Decision Support System, 105, pp. 87-95. , https://doi.org/10.1016/j.dss.2017.11.001 | |
dc.relation.references | Yaram, S., Machine learning algorithms for document clustering and fraud detection (2016) International Conference on Data Science and Engineering (ICDSE), pp. 1-6 | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |