Mostrar el registro sencillo del ítem

dc.contributor.authorHenao M.V
dc.contributor.authorMarín L.M.G
dc.contributor.authorVillegas H.H.J
dc.contributor.authorEscobar C.C.P
dc.contributor.authorCano L.M.S.
dc.date.accessioned2022-09-14T14:33:41Z
dc.date.available2022-09-14T14:33:41Z
dc.date.created2021
dc.identifier.issn16469895
dc.identifier.urihttp://hdl.handle.net/11407/7429
dc.descriptionIn the banking sector there are claims from customers, and as in the insurance sector, some correspond to cases of fraud. This work seeks to provide a literature review that allows an account of the data mining work that has been done on the subject. The analysis methodology is in place in the gathering of scientific information that has been investigated in the period 2015-2019. Two search equations are proposed and in a process of several phases the documents that are the object of study were selected. In the results, 13 relevant documents were found, which apply data mining techniques that have been grouped here into 5 categories, and 30 techniques, which have shown the best performance have been neural networks, decision trees and vector support machines. © 2021, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.eng
dc.language.isospa
dc.publisherAssociacao Iberica de Sistemas e Tecnologias de Informacao
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124384631&partnerID=40&md5=8a5660a84c4ce8bb38c5bc49b57a4f5b
dc.sourceRISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
dc.titleDetection of fraud due to misleading customer claims in banking entities through data mining techniques: a systematic review. [Detección de fraudes por reclamos engañosos de clientes en entidades bancarias a través de técnicas de minería de datos: una revisión sistemática.]
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Sistemas
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.subject.keywordData miningeng
dc.subject.keywordFraud detectioneng
dc.subject.keywordFraudulent claimeng
dc.subject.keywordSystematic revieweng
dc.relation.citationvolume2021
dc.relation.citationissueE43
dc.relation.citationstartpage276
dc.relation.citationendpage286
dc.publisher.facultyFacultad de Ingenierías
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationHenao, M.V., Estudiante Maestría en Modelación y Ciencia Computacional, Universidad de Medellín, Antioquia, Colombia
dc.affiliationMarín, L.M.G., Facultad de Ingenierías, Universidad de Medellín, Antioquia, Colombia
dc.affiliationVillegas, H.H.J., Facultad de Ciencias Básicas, Universidad de Medellín, Antioquia, Colombia
dc.affiliationEscobar, C.C.P., Facultad de Ciencias Básicas, Universidad de Medellín, Antioquia, Colombia
dc.affiliationCano, L.M.S., Grupo de Investigación Arkadius, Facultad de Ingenierías, Universidad de Medellín, Antioquia, Colombia
dc.relation.references(2004) Aplicación de Basilea II: aspectos prácticos, , https://www.bis.org/publ/bcbs109esp.pdf, Press & Communications
dc.relation.referencesBauder, R.A., Khoshgoftaar, T.M., A novel method for fraudulent medicare claims detection from expected payment deviations (2013) 17° Conferencia Internacional sobre Reutilización e Integración de la Información, pp. 11-19
dc.relation.referencesBauder, R.A., Khoshgoftaar, T.M., Richter, y A., Herland, M., Predicting medical provider specialties to detect anomalous insurance claims (2016) 28° Congreso Internacional de Herramientas con Inteligencia Artificial, pp. 784-790
dc.relation.referencesBauder, R. A, Khoshgoftaar, T. M., A probabilistic programming approach for outlier detection in healthcare claims (2016) Conferencia internacional sobre aplicaciones y aprendizaje automático, pp. 347-354
dc.relation.referencesBayerstadler, A., van Dijk, L., Winter, F., Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance (2016) Insurance Mathematics and Economic, 71, pp. 244-252. , http://dx.doi.org/10.1016/j.insmatheco.2016.09.013
dc.relation.references(2009) Ley 1328 de 2009, , http://www.secretariasenado.gov.co/senado/basedoc/ley_1328_2009.html
dc.relation.referencesJohnson, M.E., Nagarur, N., Multi-stage methodology to detect health insurance claim fraud (2016) Health Care Management Science, 19 (3), pp. 249-260
dc.relation.referencesJoudaki, H., Raashidian, A., Minaei-Bigdoli, B., Mahmoodi, M., Geraili, B., Nasiri, M, Arab, M., Improving fraud and abuse detection in general physician claims: A data mining study (2016) Journal of health policy and Management, 5 (3), pp. 165-172
dc.relation.referencesKose, I., Gokturk, M, Kilic, K., An interactive machine-learning-based electronic fraud and abuse detection system in healthcare insurance (2015) Applied Soft Computing, 36, pp. 283-299. , http://dx.doi.org/10.1016/j.asoc.2015.07.018
dc.relation.referencesLi, Y., Yan, C., Liu, W, Li, M., A principle component analysis-based random forest with the potential nearest neighbor method for automobile insurance fraud identification (2018) Applied Soft Computing, 70, pp. 1000-1009. , https://doi.org/10.1016/j.asoc.2017.07.027
dc.relation.referencesNian, K., Zhang, H., Tayal, A., Coleman, T, Li, Y., Auto insurance fraud detection using unsupervised spectral ranking for anomaly (2016) The Journal of Financ Data Science, 2 (1), pp. 58-75. , http://dx.doi.org/10.1016/j.jfds.2016.03.001
dc.relation.referencesRawte, V, Anuradha, G., (2015) Fraud detection in health insurance using data mining techniques Conferencia internacional sobre tecnología de la comunicación, la información y la informática, pp. 1-5
dc.relation.references(1993) Estatuto Orgánico del Sistema Financiero, , https://www.superfinanciera.gov.co/jsp/11301
dc.relation.referencesSubudhi, S., Panigrahi, S., Use of optimized Fuzzy C-Means clustering and supervised classifiers for automobile insurance fraud detection (2020) Journal of Computing and Information Sciencie, 32 (5), pp. 568-575. , https://doi.org/10.1016/j.jksuci.2017.09.010, 2020
dc.relation.references(2020), https://www.superfinanciera.gov.co/inicio/consumidor-financiero/informacion-general/quejas-contra-entidades-vigiladas/datos-estadisticos-cifras/informacion-estadistica-anual-11129
dc.relation.referencesWang, Y., Xu, W., Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud (2018) Decision Support System, 105, pp. 87-95. , https://doi.org/10.1016/j.dss.2017.11.001
dc.relation.referencesYaram, S., Machine learning algorithms for document clustering and fraud detection (2016) International Conference on Data Science and Engineering (ICDSE), pp. 1-6
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem