Mostrar el registro sencillo del ítem

dc.contributor.authorVargas A.C
dc.contributor.authorArrieta C.E
dc.contributor.authorTumay H.A.Y
dc.contributor.authorEcheverri-Uribe C
dc.contributor.authorAmell A.
dc.date.accessioned2022-09-14T14:33:41Z
dc.date.available2022-09-14T14:33:41Z
dc.date.created2021
dc.identifier.issn24614254
dc.identifier.urihttp://hdl.handle.net/11407/7431
dc.descriptionThe global energy demand enhances the environmental and operational benefits of natural gas as an energy alternative, due to its composition, mainly methane (CH4), it has low polluting emissions and benefits in energy and combustion systems. In the present work, the laminar burning velocity of methane was determined numerically and experimentally at two pressure conditions, 0.85 atm and 0.98 atm, corresponding to the city of Medellín and Caucasia, respectively, located in Colombia. The environmental conditions were 0.85 atm, 0.98 atm, and 295 ± 1 K. The simulations and experimental measurements were carried out for different equivalence relations. Experimental laminar burning velocities were determined using the burner method and spontaneous chemiluminescence technique, flames were generated using burners with contoured rectangular ports to maintain laminar Reynolds numbers for the equivalence ratios under study and to reduce the effects of stretch and curvature in the direction of the burner’s axis. In general, the laminar burning velocity fits well with the numerical results. With the results obtained, a correlation is proposed that relates the laminar burning velocity with the effects of pressure, in the form SL = aPb, where a and b are model constants. Sensitivity analysis was performed using the GRI-Mech 3.0 mechanism which showed that the most sensitive reaction was H+O2 = O+OH (R38). Additionally, it was found that the reactions H+CH3 (+M) = CH4 (+M) (R52), 2CH3 (+M) = C2H6 (+M) (R158), and O+CH3 = H+CH2O (R10) dominate the consumption of CH3 which is an important radical in the oxidation of methane, this analysis is carried out for equivalence ratios of 0.8 and 1.0, and atmospheric pressures of 0.85 atm and 0.98 atm. © The Author(s) 2021.eng
dc.language.isoeng
dc.publisherScientific Route
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85111690124&doi=10.21303%2f2461-4262.2021.001775&partnerID=40&md5=c8358567cdd2e047bfacd65d60ba2eeb
dc.sourceEUREKA, Physics and Engineering
dc.titleDetermination of laminar burning velocity of methane/air flames in sub atmospheric environments
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería en Energía
dc.type.spaArtículo
dc.identifier.doi10.21303/2461-4262.2021.001775
dc.subject.keywordLaminar burning velocityeng
dc.subject.keywordMethaneeng
dc.subject.keywordPressure effecteng
dc.subject.keywordSub atmospheric conditionseng
dc.relation.citationvolume2021
dc.relation.citationissue4
dc.relation.citationstartpage50
dc.relation.citationendpage62
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationVargas, A.C., Department of Mechatronics Engineering, Advanced Materials and Energy Research Group – MATyER, Instituto Tecnológico Metropolitano, 73 No. 76A-354 str., way to Volador, Medellín, 050034, Colombia, Department of Mechanical Engineering, Science and Technology of Gases and Rational Use of Energy Group – GASURE, Universidad de Antioquia, 67 No. 53–108 str., Block 19-000, Medellín, 050010, Colombia
dc.affiliationArrieta, C.E., Faculty of Engineering Energy Research Group – GRINEN Universidad de Medellín, 87 No. 30–65 ave, Medellín, 050026, Colombia
dc.affiliationTumay, H.A.Y., Department of Mechanical Engineering, Research Group in New Technologies, Sustainability, and Innovation – GINSTI, Universidad Francisco de Paula Santander Ocaña, Sede el Algodonal Vía Acolsure, Norte de Santander, Ocaña, 546552, Colombia
dc.affiliationEcheverri-Uribe, C., Department of Mechanical Engineering, Science and Technology of Gases and Rational Use of Energy Group – GASURE, Universidad de Antioquia, 67 No. 53–108 str., Block 19-000, Medellín, 050010, Colombia
dc.affiliationAmell, A., Department of Mechanical Engineering, Science and Technology of Gases and Rational Use of Energy Group – GASURE, Universidad de Antioquia, 67 No. 53–108 str., Block 19-000, Medellín, 050010, Colombia
dc.relation.referencesSerrano, C., Hernández, J. J., Mandilas, C., Sheppard, C. G. W., Woolley, R., Laminar burning behaviour of biomass gasification-derived producer gas (2008) International Journal of Hydrogen Energy, 33 (2), pp. 851-862. , https://doi.org/10.1016/j.ijhydene.2007.10.050
dc.relation.referencesHernandez, J. J., Serrano, C., Perez, J., Prediction of the Autoignition Delay Time of Producer Gas from Biomass Gasification (2005) Energy & Fuels, 20 (2), pp. 532-539. , https://doi.org/10.1021/ef058025c
dc.relation.referencesHan, X., Wang, Z., Wang, S., Whiddon, R., He, Y., Lv, Y., Konnov, A. A., Parametrization of the temperature dependence of laminar burning velocity for methane and ethane flames (2019) Fuel, 239, pp. 1028-1037. , https://doi.org/10.1016/j.fuel.2018.11.118
dc.relation.referencesKhan, A. R., Ravi, M. R., Ray, A., Experimental and chemical kinetic studies of the effect of H2 enrichment on the laminar burning velocity and flame stability of various multicomponent natural gas blends (2019) International Journal of Hydrogen Energy, 44 (2), pp. 1192-1212. , https://doi.org/10.1016/j.ijhydene.2018.10.207
dc.relation.referencesWang, J., Yu, S., Zhang, M., Jin, W., Huang, Z., Chen, S., Kobayashi, H., Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa (2015) Experimental Thermal and Fluid Science, 68, pp. 196-204. , https://doi.org/10.1016/j.expthermflusci.2015.04.015
dc.relation.referencesLaw, C. K., (2006) Combustion Physics, , https://doi.org/10.1017/cbo9780511754517, Cambridge University Press
dc.relation.referencesVargas, A. C., García, A. M., Arrieta, C. E., Sierra del Rio, J., Amell, A., Burning Velocity of Turbulent Methane/ Air Premixed Flames in Subatmospheric Environments (2020) ACS Omega, 5 (39), pp. 25095-25103. , https://doi.org/10.1021/acsomega.0c02670
dc.relation.referencesZhao, H., Wang, J., Cai, X., Dai, H., Bian, Z., Huang, Z., Flame structure, turbulent burning velocity and its unified scaling for lean syngas/air turbulent expanding flames (2021) International Journal of Hydrogen Energy, , https://doi.org/10.1016/j.ijhydene.2021.05.090
dc.relation.referencesWang, Z., Zhou, B., Yu, S., Brackmann, C., Li, Z., Richter, M., Structure and burning velocity of turbulent pre-mixed methane/air jet flames in thin-reaction zone and distributed reaction zone regimes (2019) Proceedings of the Combustion Institute, 37 (2), pp. 2537-2544. , https://doi.org/10.1016/j.proci.2018.09.023
dc.relation.referencesAmirante, R., Distaso, E., Tamburrano, P., Reitz, R. D., Laminar flame speed correlations for methane, ethane, propane and their mixtures, and natural gas and gasoline for spark-ignition engine simulations (2017) International Journal of Engine Research, 18 (9), pp. 951-970. , https://doi.org/10.1177/1468087417720018
dc.relation.referencesLiu, C., Yan, B., Chen, G., Bai, X. S., Structures and burning velocity of biomass derived gas flames (2010) International Journal of Hydrogen Energy, 35 (2), pp. 542-555. , https://doi.org/10.1016/j.ijhydene.2009.11.020
dc.relation.referencesZheng, W., Pang, L., Liu, Y., Xie, F., Zeng, W., Effects of initial condition and fuel composition on laminar burning velocities of blast furnace gas with low heat value (2021) Fuel, 289, p. 119775. , https://doi.org/10.1016/j.fuel.2020.119775
dc.relation.referencesKonnov, A. A., Mohammad, A., Kishore, V. R., Kim, N. I., Prathap, C., Kumar, S., A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures (2018) Progress in Energy and Combustion Science, 68, pp. 197-267. , https://doi.org/10.1016/j.pecs.2018.05.003
dc.relation.referencesBurrell, R. R., Lee, D. J., Egolfopoulos, F. N., Propagation and extinction of subatmospheric counterflow methane flames (2018) Combustion and Flame, 195, pp. 117-127. , https://doi.org/10.1016/j.combustflame.2018.03.034
dc.relation.referencesKonnov, A. A., Riemeijer, R., de Goey, L. P. H., Adiabatic laminar burning velocities of CH4+H2+air flames at low pressures (2010) Fuel, 89 (7), pp. 1392-1396. , https://doi.org/10.1016/j.fuel.2009.11.002
dc.relation.referencesKuznetsov, M., Kobelt, S., Grune, J., Jordan, T., Flammability limits and laminar flame speed of hydrogen–air mixtures at sub-atmospheric pressures (2012) International Journal of Hydrogen Energy, 37 (22), pp. 17580-17588. , https://doi.org/10.1016/j.ijhydene.2012.05.049
dc.relation.referencesTurns, S. R., (2000) An Introduction to Combustion Concepts and Applications, , McGraw-Hill Education
dc.relation.referencesEgolfopoulos, F. N., Law, C. K., Chain mechanisms in the overall reaction orders in laminar flame propagation (1990) Combustion and Flame, 80 (1), pp. 7-16. , https://doi.org/10.1016/0010-2180(90)90049-w
dc.relation.referencesKobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T., Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa (1997) Combustion and Flame, 108 (1-2), pp. 104-117. , https://doi.org/10.1016/s0010-2180(96)00103-4
dc.relation.referencesAndrews, G. E., Bradley, D., The burning velocity of methane-air mixtures (1972) Combustion and Flame, 19 (2), pp. 275-288. , https://doi.org/10.1016/s0010-2180(72)80218-9
dc.relation.referencesPeters, N., Rogg, B., (1993) Reduced Kinetic Mechanisms for Applications in Combustion Systems, p. 362. , https://doi.org/10.1007/978-3-540-47543-9, (Eds) Springer
dc.relation.referencesGoswami, M., Bastiaans, R. J. M., de Goey, L. P. H., Konnov, A. A., Experimental and modelling study of the effect of elevated pressure on ethane and propane flames (2016) Fuel, 166, pp. 410-418. , https://doi.org/10.1016/j.fuel.2015.11.013
dc.relation.referencesEgolfopoulos, F. N., Law, C. K., An experimental and computational study of the burning rates of ultra-lean to moderately-rich H2/O2/N2 laminar flames with pressure variations (1991) Symposium (International) on Combustion, 23 (1), pp. 333-340. , https://doi.org/10.1016/s0082-0784(06)80276-6
dc.relation.referencesCardona Vargas, A., Amell Arrieta, A., Arrieta, C. E., Combustion characteristics of several typical shale gas mixtures (2016) Journal of Natural Gas Science and Engineering, 33, pp. 296-304. , https://doi.org/10.1016/j.jngse.2016.03.039
dc.relation.referencesOh, J., Noh, D., Laminar burning velocity of oxy-methane flames in atmospheric condition (2012) Energy, 45 (1), pp. 669-675. , https://doi.org/10.1016/j.energy.2012.07.027
dc.relation.referencesKee, R., Grcar, J., Smooke, M., Miller, J., Meeks, E., PREMIX: a fortran Program for Modeling Steady Laminar One-Dimensional (1985) SANDIA Natl Lab, pp. 1-87
dc.relation.referencesReaction Design 15083, , CHEMKIM-PRO Release. San Diego
dc.relation.referencesSmith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., (2000) GRI-Mech 3.0, , et. al
dc.relation.referencesVagelopoulos, C. M., Egolfopoulos, F. N., Direct experimental determination of laminar flame speeds (1998) Symposium (International) on Combustion, 27 (1), pp. 513-519. , https://doi.org/10.1016/s0082-0784(98)80441-4
dc.relation.referencesCardona, C., Amell, A., Burbano, H., Laminar Burning Velocity of Natural Gas/Syngas-Air Mixture (2013) Dyna, 80, pp. 136-143
dc.relation.referencesDong, Y., Vagelopoulos, C. M., Spedding, G. R., Egolfopoulos, F. N., Measurement of laminar flame speeds through digital particle image velocimetry: Mixtures of methane and ethane with hydrogen, oxygen, nitrogen, and helium (2002) Proceedings of the Combustion Institute, 29 (2), pp. 1419-1426. , https://doi.org/10.1016/s1540-7489(02)80174-2
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem