Mostrar el registro sencillo del ítem

dc.contributor.authorZuluaga C.A
dc.contributor.authorAristizábal L.M
dc.contributor.authorRúa S
dc.contributor.authorFranco D.A
dc.contributor.authorOsorio D.A
dc.contributor.authorVásquez R.E.
dc.date.accessioned2022-09-14T14:33:41Z
dc.date.available2022-09-14T14:33:41Z
dc.date.created2022
dc.identifier.issn20771312
dc.identifier.urihttp://hdl.handle.net/11407/7432
dc.descriptionThis paper addresses the development of a modular software architecture for the de-sign/construction/operation of a remotely operated vehicle (ROV), based on systems engineering. First, systems engineering and the Vee model are presented with the objective of defining the interactions of the stakeholders with the software architecture development team and establishing the baselines that must be met in each development phase. In the development stage, the definition of the architecture and its connection with the hardware is presented, taking into account the use of the actor model, which represents the high-level software architecture used to solve concurrency problems. Subsequently, the structure of the classes is defined both at high and low levels in the instruments using the object-oriented programming paradigm. Finally, unit tests are developed for each component in the software architecture, quality assessment tests are implemented for system functions fulfillment, and a field sea trial for testing different modules of the vehicle is described. This approach is well suited for the development of complex systems such as marine vehicles and those systems which require scalability and modularity to add functionalities. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85127961146&doi=10.3390%2fjmse10040464&partnerID=40&md5=9ef74b855dd09719845640f902fb991d
dc.sourceJournal of Marine Science and Engineering
dc.titleDevelopment of a Modular Software Architecture for Underwater Vehicles Using Systems Engineering
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Sistemas
dc.type.spaArtículo
dc.identifier.doi10.3390/jmse10040464
dc.subject.keywordMarine engineeringeng
dc.subject.keywordMarine roboticseng
dc.subject.keywordRemotely operated vehicleeng
dc.subject.keywordSoftware architectureeng
dc.subject.keywordSystems engineeringeng
dc.relation.citationvolume10
dc.relation.citationissue4
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationZuluaga, C.A., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.affiliationAristizábal, L.M., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.affiliationRúa, S., Electronics and Telecommunications Engineering Department, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFranco, D.A., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.affiliationOsorio, D.A., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.affiliationVásquez, R.E., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.relation.referencesMacreadie, P.I., McLean, D.L., Thomson, P.G., Partridge, J.C., Jones, D.O., Gates, A.R., Benfield, M.C., Smith, L.L., Eyes in the sea: Unlocking the mysteries of the ocean using industrial, remotely operated vehicles (ROVs) (2018) Sci. Total Environ, 634, pp. 1077-1091. , [CrossRef] [PubMed]
dc.relation.referencesCapocci, R., Omerdic, E., Dooly, G., Toal, D., Fault-Tolerant Control for ROVs Using Control Reallocation and Power Isolation (2018) J. Mar. Sci. Eng, 6, p. 40. , [CrossRef]
dc.relation.referencesIgnacio, L.C., Victor, R.R., Francisco, D.R.R., Pascoal, A., Optimized design of an autonomous underwater vehicle, for exploration in the Caribbean Sea (2019) Ocean Eng, 187, p. 106184. , [CrossRef]
dc.relation.referencesMarini, S., Gjeci, N., Govindaraj, S., But, A., Sportich, B., Ottaviani, E., Márquez, F.P.G., Clausen, C.V., ENDURUNS: An Integrated and Flexible Approach for Seabed Survey Through Autonomous Mobile Vehicles (2020) J. Mar. Sci. Eng, 8, p. 633. , [CrossRef]
dc.relation.referencesBraginsky, B., Baruch, A., Guterman, H., Development of an Autonomous Surface Vehicle capable of tracking Autonomous Underwater Vehicles (2020) Ocean Eng, 197, p. 106868. , [CrossRef]
dc.relation.referencesGuardeño, R., López, M.J., Sánchez, J., Consegliere, A., AutoTuning Environment for Static Obstacle Avoidance Methods Applied to USVs (2020) J. Mar. Sci. Eng, 8, p. 300. , [CrossRef]
dc.relation.referencesNilssen, I., Ødegård, Ø., Sørensen, A.J., Johnsen, G., Moline, M.A., Berge, J., Integrated environmental mapping and monitoring, a methodological approach to optimise knowledge gathering and sampling strategy (2015) Mar. Pollut. Bull, 96, pp. 374-383. , [CrossRef]
dc.relation.referencesZolich, A., Johansen, T.A., Cisek, K., Klausen, K., Unmanned aerial system architecture for maritime missions. Design & hardware description (2015) 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), , IEEE: Cancun, Mexico, [CrossRef]
dc.relation.referencesSulligoi, G., Vicenzutti, A., Menis, R., All-Electric Ship Design: From Electrical Propulsion to Integrated Electrical and Electronic Power Systems (2016) IEEE Trans. Transp. Electrif, 2, pp. 507-521. , [CrossRef]
dc.relation.referencesHachicha, S., Zaoui, C., Dallagi, H., Nejim, S., Maalej, A., Innovative design of an underwater cleaning robot with a two arm manipulator for hull cleaning (2019) Ocean Eng, 181, pp. 303-313. , [CrossRef]
dc.relation.referencesSaravanan, K., Aswini, S., Kumar, R., Son, L.H., How to prevent maritime border collision for fisheries?—A design of Real-Time Automatic Identification System (2019) Earth Sci. Inform, 12, pp. 241-252. , [CrossRef]
dc.relation.referencesMa, T., Liu, S., Xiao, H., Location of natural gas leakage sources on offshore platform by a multi-robot system using particle swarm optimization algorithm (2020) J. Nat. Gas Sci. Eng, 84, p. 103636. , [CrossRef]
dc.relation.referencesSingh, Y., Bibuli, M., Zereik, E., Sharma, S., Khan, A., Sutton, R., A Novel Double Layered Hybrid Multi-Robot Framework for Guidance and Navigation of Unmanned Surface Vehicles in a Practical Maritime Environment (2020) J. Mar. Sci. Eng, 8, p. 624. , [CrossRef]
dc.relation.referencesUtter, B., Brown, A., Open-source five degree of freedom motion platform for investigating fish-robot interaction (2020) HardwareX, 7, p. e00107. , [CrossRef]
dc.relation.referencesCapocci, R., Dooly, G., Omerdić, E., Coleman, J., Newe, T., Toal, D., Inspection-Class Remotely Operated Vehicles—A Review (2017) J. Mar. Sci. Eng, 5, p. 13. , [CrossRef]
dc.relation.referencesSpears, A., West, M., Meister, M., Buffo, J., Walker, C., Collins, T.R., Howard, A., Schmidt, B., Under Ice in Antarctica: The Icefin Unmanned Underwater Vehicle Development and Deployment (2016) IEEE Robot. Autom. Mag, 23, pp. 30-41. , [CrossRef]
dc.relation.referencesJiang, C.M., Wan, L., Sun, Y.S., Design of motion control system of pipeline detection AUV (2017) J. Cent. South Univ, 24, pp. 637-646. , [CrossRef]
dc.relation.referencesLi, Y., Guo, S., Wang, Y., Design and characteristics evaluation of a novel spherical underwater robot (2017) Robot. Auton. Syst, 94, pp. 61-74. , [CrossRef]
dc.relation.referencesGelli, J., Meschini, A., Monni, N., Pagliai, M., Ridolfi, A., Marini, L., Allotta, B., Development and Design of a Compact Autonomous Underwater Vehicle: Zeno AUV (2018) IFAC-PapersOnLine, 51, pp. 20-25. , [CrossRef]
dc.relation.referencesPugi, L., Allotta, B., Pagliai, M., Redundant and reconfigurable propulsion systems to improve motion capability of underwater vehicles (2018) Ocean Eng, 148, pp. 376-385. , [CrossRef]
dc.relation.referencesHong, S., Chung, D., Kim, J., Kim, Y., Kim, A., Yoon, H.K., In-water visual ship hull inspection using a hover-capable underwater vehicle with stereo vision (2018) J. Field Robot, 36, pp. 531-546. , [CrossRef]
dc.relation.referencesXu, H., Zhang, G.C., Sun, Y.S., Pang, S., Ran, X.R., Wang, X.B., Design and Experiment of a Plateau Data-Gathering AUV (2019) J. Mar. Sci. Eng, 7, p. 376. , [CrossRef]
dc.relation.referencesPinjare, N.S., Chaitra, S., Shraavan, S., Naveen, I.G., Underwater remotely operated vehicle for surveillance and marine study (2017) Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), , Mysuru, India, 15–16 December [CrossRef]
dc.relation.referencesRozman, B.Y., Elkin, A.V., Kaptsov, A.S., Ermakov, I.D., Ermakov, D.I., Krasnov, V.G., Kondrashov, L.S., Upgrade of ROV Super GNOME Pro for Underwater Monitoring in the Caspian Sea (2018) Oceanology, 58, pp. 144-147. , [CrossRef]
dc.relation.referencesZhang, Q., Wang, H., Li, B., Cui, S., Zhao, Y., Zhu, P., Sun, B., Li, S., Development and Sea Trials of a 6000 m Class ROV for Marine Scientific Research (2018) Proceedings of the 2018 OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO), , Kobe, Japan, 28–31 May [CrossRef]
dc.relation.referencesKadiyam, J., Mohan, S., Conceptual design of a hybrid propulsion underwater robotic vehicle with different propulsion systems for ocean observations (2019) Ocean Eng, 182, pp. 112-125. , [CrossRef]
dc.relation.referencesKong, F., Guo, Y., Lyu, W., Dynamics Modeling and Motion Control of an New Unmanned Underwater Vehicle (2020) IEEE Access, 8, pp. 30119-30126. , [CrossRef]
dc.relation.referencesRamírez-Macías, J.A., Vásquez, R.E., Sørensen, A.J., Sævik, S., Motion Feasibility Framework for Remotely Operated Vehicles Based on Dynamic Positioning Capability (2021) J. Offshore Mech. Arct. Eng, 143, p. 011201. , [CrossRef]
dc.relation.references(2017) NASA Systems Engineering Handbook: NASA/SP-2016-6105 Rev2—Full Color Version, , 12th Media Services: Washington, DC, USA
dc.relation.referencesMadni, A.M., Sievers, M., Systems Integration: Key Perspectives, Experiences, and Challenges (2013) Syst. Eng, 17, pp. 37-51. , [CrossRef]
dc.relation.referencesMadni, A.M., Sievers, M., Model-based systems engineering: Motivation, current status, and research opportunities (2018) Syst. Eng, 21, pp. 172-190. , [CrossRef]
dc.relation.referencesDove, R., Schindel, B., Scrapper, C., Agile Systems Engineering Process Features Collective Culture, Consciousness, and Conscience at SSC Pacific Unmanned Systems Group (2016) INCOSE Int. Symp, 26, pp. 982-1001. , [CrossRef]
dc.relation.referencesFreire, L.O., Oliveira, L.M., Vale, R.T., Medeiros, M., Diana, R.E., Lopes, R.M., Pellini, E.L., de Barros, E.A., Development of an AUV control architecture based on systems engineering concepts (2018) Ocean Eng, 151, pp. 157-169. , [CrossRef]
dc.relation.referencesEaton, C., Chong, E., Maciejewski, A., Multiple-Scenario Unmanned Aerial System Control: A Systems Engineering Approach and Review of Existing Control Methods (2016) Aerospace, 3, p. 1. , [CrossRef]
dc.relation.referencesHien, N.V., Truong, V.T., Bui, N.T., An Object-Oriented Systems Engineering Point of View to Develop Controllers of Quadrotor Unmanned Aerial Vehicles (2020) Int. J. Aerosp. Eng, 2020, p. 8862864. , [CrossRef]
dc.relation.referencesWeinert, B., Hahn, A., Norkus, O., A domain-specific architecture framework for the maritime domain (2016) Informatik 2016, , P-259 ed.
dc.relation.referencesHeinrich, C., Mayr, M.P., Eds.
dc.relation.referencesLecture Notes in Informatics
dc.relation.referencesGesellschaft für Informatik: Bonn, Germany
dc.relation.referencesHenderson-Sellers, B., Edwards, J.M., The object-oriented systems life cycle (1990) Commun. ACM, 33, pp. 142-159. , [CrossRef]
dc.relation.referencesKim, T., Yuh, J., Development of a real-time control architecture for a semi-autonomous underwater vehicle for intervention missions (2004) Control Eng. Pract, 12, pp. 1521-1530. , [CrossRef]
dc.relation.referencesLi, J.H., Jun, B.H., Lee, P.M., Hong, S.W., A hierarchical real-time control architecture for a semi-autonomous underwater vehicle (2005) Ocean Eng, 32, pp. 1631-1641. , [CrossRef]
dc.relation.referencesDe Assis, F.H., Takase, F.K., Maruyama, N., Miyagi, P.E., Developing an ROV software control architecture: A formal specification approach (2012) Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society IECON 2012, , Montreal, QC, Canada, 25–28 October [CrossRef]
dc.relation.referencesSun, Y.S., Wan, L., Gan, Y., Wang, J.G., Jiang, C.M., Design of motion control of dam safety inspection underwater vehicle (2012) J. Cent. South Univ, 19, pp. 1522-1529. , [CrossRef]
dc.relation.referencesFreitas, R.S., Xaud, M.F., Marcovistz, I., Neves, A.F., Faria, R.O., Carvalho, G.P., Hsu, L., Lizarralde, F., The embedded electronics and software of DORIS offshore robot (2015) IFAC-PapersOnLine, 48, pp. 208-213. , [CrossRef]
dc.relation.referencesBonin-Font, F., Oliver, G., Wirth, S., Massot, M., Negre, P.L., Beltran, J.P., Visual sensing for autonomous underwater exploration and intervention tasks (2015) Ocean Eng, 93, pp. 25-44. , [CrossRef]
dc.relation.referencesChoyekh, M., Kato, N., Yamaguchi, Y., Dewantara, R., Chiba, H., Senga, H., Yoshie, M., Short, T., Development and Operation of Underwater Robot for Autonomous Tracking and Monitoring of Subsea Plumes After Oil Spill and Gas Leak from Seabed and Analyses of Measured Data (2017) Applications to Marine Disaster Prevention, pp. 17-93. , Springer: Tokyo, Japan, [CrossRef]
dc.relation.referencesGerasimou, S., Calinescu, R., Shevtsov, S., Weyns, D., UNDERSEA: An Exemplar for Engineering Self-Adaptive Unmanned Underwater Vehicles (2017) Proceedings of the 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), , Buenos Aires, Argentina, 22–23 May [CrossRef]
dc.relation.referencesSkjong, S., Rindarøy, M., Kyllingstad, L.T., Æsøy, V., Pedersen, E., Virtual prototyping of maritime systems and operations: Applications of distributed co-simulations (2017) J. Mar. Sci. Technol, 23, pp. 835-853. , [CrossRef]
dc.relation.referencesZolich, A., Palma, D., Kansanen, K., Fjørtoft, K., Sousa, J., Johansson, K.H., Jiang, Y., Johansen, T.A., Survey on Communication and Networks for Autonomous Marine Systems (2018) J. Intell. Robot. Syst, 95, pp. 789-813. , [CrossRef]
dc.relation.referencesBozhinoski, D., Ruscio, D.D., Malavolta, I., Pelliccione, P., Crnkovic, I., Safety for mobile robotic systems: A systematic mapping study from a software engineering perspective (2019) J. Syst. Softw, 151, pp. 150-179. , [CrossRef]
dc.relation.referencesYu, C., Xiang, X., Maurelli, F., Zhang, Q., Zhao, R., Xu, G., Onboard system of hybrid underwater robotic vehicles: Integrated software architecture and control algorithm (2019) Ocean Eng, 187, p. 106121. , [CrossRef]
dc.relation.referencesCentelles, D., Soriano, A., Marin, R., Sanz, P.J., Wireless HROV Control with Compressed Visual Feedback Using Acoustic and RF Links (2020) J. Intell. Robot. Syst, 99, pp. 713-728. , [CrossRef]
dc.relation.referencesSimetti, E., Indiveri, G., Pascoal, A.M., WiMUST: A cooperative marine robotic system for autonomous geotechnical surveys (2020) J. Field Robot, 38, pp. 268-288. , [CrossRef]
dc.relation.referencesChen, G., Shen, Y., Qu, N., Wang, D., He, B., Control architecture of autonomous underwater vehicle for coverage mission in irregular region (2021) Ocean Eng, 236, p. 109407. , [CrossRef]
dc.relation.referencesRúa, S., Vásquez, R.E., Crasta, N., Betancur, M.J., Pascoal, A., Observability analysis for a cooperative range-based navigation system that uses a rotating single beacon (2022) Ocean Eng, 248, p. 110697. , [CrossRef]
dc.relation.referencesAristizábal, L.M., Zuluaga, C.A., Rúa, S., Vásquez, R.E., Modular Hardware Architecture for the Development of Underwater Vehicles Based on Systems Engineering (2021) J. Mar. Sci. Eng, 9, p. 516. , [CrossRef]
dc.relation.referencesFromm, T., Mueller, C.A., Pfingsthorn, M., Birk, A., Di Lillo, P., Efficient continuous system integration and validation for deep-sea robotics applications (2017) Proceedings of the OCEANS 2017—Aberdeen, pp. 1-6. , Aberdeen, UK, 19–22 June [CrossRef]
dc.relation.referencesDi Lillo, P., Simetti, E., Wanderlingh, F., Casalino, G., Antonelli, G., Underwater Intervention With Remote Supervision via Satellite Communication: Developed Control Architecture and Experimental Results Within the Dexrov Project (2021) IEEE Trans. Control Syst. Technol, 29, pp. 108-123. , [CrossRef]
dc.relation.references(2015) INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, , 4th ed.
dc.relation.referencesWiley: Hoboken, NJ, USA
dc.relation.referencesAristizabal, L.M., Rua, S., Zuluaga, C.A., Posada, N.L., Vasquez, R.E., Hardware and software development for the navigation, guidance, and control system of a remotely operated vehicle (2017) Proceedins of the 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), , Cartagena, Colombia, 18–20 October [CrossRef]
dc.relation.referencesZhang, H., Huang, B., Ju, H., An Improved SoSE Model—The ’V+’ Model (2020) Proceedings of the SOSE 2020—IEEE 15th International Conference of System of Systems Engineering, pp. 403-409. , Budapest, Hungary, 2–4 June [CrossRef]
dc.relation.referencesYu, C., Li, Q., Liu, K., Chen, Y., Wei, H., Industrial Design and Development Software System Architecture Based on Model-Based Systems Engineering and Cloud Computing (2021) Annu. Rev. Control, 51, pp. 401-423. , [CrossRef]
dc.relation.referencesAristizábal, L.M., Rúa, S., Gaviria, C.E., Osorio, S.P., Zuluaga, C.A., Posada, N.L., Vásquez, R.E., Design of an open source-based control platform for an underwater remotely operated vehicle (2016) DYNA, 83, pp. 198-205. , [CrossRef]
dc.relation.referencesAgha, G., Thati, P., An Algebraic Theory of Actors and Its Application to a Simple Object-Based Language (2004) From Object-Orientation to Formal Methods, pp. 26-57. , Springer: Berlin/Heidelberg, Germany, [CrossRef]
dc.relation.referencesKarmani, R.K., Agha, G., Squillante, M.S., Seiferas, J., Brezina, M., Hu, J., Tuminaro, R., Geijn, R.A., Actors (2011) Encyclopedia of Parallel Computing, pp. 1-11. , Springer: Boston, MA USA, [CrossRef]
dc.relation.referencesBurgin, M., (2017) Systems, Actors and Agents: Operation in a multicomponent environment, , arXiv arXiv:1711.08319
dc.relation.referencesAgha, G., Concurrent Object-Oriented Programming (1990) Commun. ACM, 33, pp. 125-141. , [CrossRef]
dc.relation.referencesHiguera-Toledano, M.T., About 15 years of real-time Java (2012) Proceedings of the 10th International Workshop on Java Technologies for Real-Time and Embedded Systems—JTRES ‘12, , ACM Press: New York, NY, USA, [CrossRef]
dc.relation.referencesKhamespanah, E., Sirjani, M., Mechitov, K., Agha, G., Modeling and analyzing real-time wireless sensor and actuator networks using actors and model checking (2018) Int. J. Softw. Tools Technol. Transf, 20, pp. 547-561. , [CrossRef]
dc.relation.referencesNigro, L., Parallel Theatre: An actor framework in Java for high performance computing (2021) Simul. Model. Pract. Theory, 106, p. 102189. , [CrossRef]
dc.relation.referencesLatoschik, M.E., Fischbach, M., Chapter Engineering Variance: Software Techniques for Scalable, Customizable, and Reusable Multimodal Processing (2014) Human-Computer Interaction. Theories, Methods, and Tools
dc.relation.referencesLecture Notes in Computer Science, pp. 308-319. , Springer International Publishing: Cham, Switzerland, [CrossRef]
dc.relation.referencesHewitt, C., (2017) Actor model of computation: Scalable robust information systems, , arXiv arXiv:1008.1459
dc.relation.referencesMouelhi, S., Cancila, D., Ramdane-Cherif, A., Distributed Object-Oriented Design of Autonomous Control Systems for Connected Vehicle Platoons (2017) Proceedings of the 2017 22nd International Conference on Engineering of Complex Computer Systems (ICECCS), , Fukuoka, Japan, 5–8 November [CrossRef]
dc.relation.referencesXu, R., Li, C., A modular agricultural robotic system (MARS) for precision farming: Concept and implementation (2022) J. Field Robot, , [CrossRef]
dc.relation.referencesCzerwinski, F., Oddershede, L.B., TimeSeriesStreaming.vi: LabVIEW program for reliable data streaming of large analog time series (2011) Comput. Phys. Commun, 182, pp. 485-489. , [CrossRef]
dc.relation.referencesMorlock, M., Meyer, N., Pick, M.A., Seifried, R., Real-time trajectory tracking control of a parallel robot with flexible links (2021) Mech. Mach. Theory, 158, p. 104220. , [CrossRef]
dc.relation.referencesProkhorenko, L., Klimov, D., Mishchenkov, D., Poduraev, Y., Surgeon–robot interface development framework (2020) Comput. Biol. Med, 120, p. 103717. , [CrossRef]
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem