Mostrar el registro sencillo del ítem

dc.contributor.authorRamirez-Muñoz A
dc.contributor.authorPérez S
dc.contributor.authorMuñoz-Saldaña J
dc.contributor.authorFlórez E
dc.contributor.authorAcelas N.
dc.date.accessioned2022-09-14T14:33:42Z
dc.date.available2022-09-14T14:33:42Z
dc.date.created2021
dc.identifier.issn22151532
dc.identifier.urihttp://hdl.handle.net/11407/7439
dc.descriptionIndustrialization activities have led to the discharge of heavy metals into water, with an imminent threat to the environment. The use of natural materials as low-cost sorbents for the removal of heavy metals from aqueous solutions has recently received major attention. Water hyacinth (Eichhornia crassipes) is a noxious weed due to its congested growth and rapid spread causing serious environmental problems e.g., in the water quality and its respective fauna. In this work, water hyacinth was used for the removal and immobilization levels of Cd2+ and Cu2+ from aqueous solutions, which is a major concern from several water sources in industrialized or mining regions. Particularly, the effect of calcination treatments between 350 and 900 °C of water hyacinth is here reported. The removal capacity increased with the calcination temperature from 550 °C (99.17 mg/g for Cd2+ and 53.78 mg/g for Cu2+) to a maximum level at 700 °C (204.17 mg/g for Cd2+ and 131.14 mg/g for Cu2+). Heat treatments at 700 °C favored the formation of Ca(OH)2, which reacts with the phosphorus present in water hyacinth to form calcium apatite (36.64%), which is known as an active Ca-P phase for the removal of metallic ions. Compounds produced during the calcination of the water hyacinth promoted the Cd2+ and Cu2+ uptake through the precipitation of CdCO3 - Cd2P2O7 and Cu0.05Mg0.95O - Cu2P2O7 compounds, among others. These precipitates have low solubility (0.055% of Cd2+ and 0.003% of Cu2+) that reduce contaminants mobility and therefore increase removal feasibility. © 2021 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85115635054&doi=10.1016%2fj.enmm.2021.100574&partnerID=40&md5=75591fc4dbcff0be93038b32d05b0fde
dc.sourceEnvironmental Nanotechnology, Monitoring and Management
dc.titleEco-friendly materials obtained through a simple thermal transformation of water hyacinth (Eichhornia Crassipes) for the removal and immobilization of Cd2+ and Cu2+ from aqueous solutions
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.enmm.2021.100574
dc.subject.keywordCadmiumeng
dc.subject.keywordCoppereng
dc.subject.keywordHeavy metalseng
dc.subject.keywordImmobilization metalseng
dc.subject.keywordWater hyacintheng
dc.relation.citationvolume16
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationRamirez-Muñoz, A., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationPérez, S., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationMuñoz-Saldaña, J., Centro de Investigación y de Estudios Avanzados del IPN - Unidad Querétaro, Lib. Norponiente No.2000, Fracc. Real de Juriquilla76230 Querétaro, Mexico
dc.affiliationFlórez, E., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationAcelas, N., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.relation.referencesAnsari, A., Ali, A., Asif, M., Shamsuzzaman, Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines (2018) New J. Chem., 42, pp. 184-197
dc.relation.referencesAyodele, O., Olusegun, S.J., Oluwasina, O.O., Okoronkwo, E.A., Olanipekun, E.O., Mohallem, N.D.S., Guimarães, W.G., Duarte, H.A., Experimental and theoretical studies of the adsorption of Cu and Ni ions from wastewater by hydroxyapatite derived from eggshells (2021) Environ. Nanotechnology, Monit. Manag., 15, p. 100439
dc.relation.referencesBailliez, S., Nzihou, A., Bèche, E., Flamant, G., Removal of Lead (Pb) by Hydroxyapatite Sorbent (2004) Process Saf. Environ. Prot., 82 (2), pp. 175-180
dc.relation.referencesBello, A.O., Tawabini, B.S., Khalil, A.B., Boland, C.R., Saleh, T.A., Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems (2018) Ecol. Eng., 120, pp. 126-133
dc.relation.referencesBerzina-Cimdina, L., Borodajenko, N., (2012) Infrared Spectroscopy - Materials Science, Engineering and Technology, , InTech
dc.relation.referencesBiesinger, M.C., Advanced analysis of copper X-ray photoelectron spectra (2017) Surf. Interface Anal., 49, pp. 1325-1334
dc.relation.referencesBiesinger, M.C., Lau, L.W.M., Gerson, A.R., Smart, R.S.C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn (2010) Appl. Surf. Sci., 257 (3), pp. 887-898
dc.relation.referencesChen, J.H., Liu, P.S., Cheng, W., PBA-loaded albite-base ceramic foam in application to adsorb harmful ions of Cd, Cs and As(V) in water (2019) Multidiscip. Model. Mater. Struct., 15 (3), pp. 659-672
dc.relation.referencesChen, Y., Li, M., Li, Y., Liu, Y., Chen, Y., Li, H., Li, L., Chen, L., Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: Adsorption behavior and mechanisms (2021) Bioresour. Technol., 321, p. 124413
dc.relation.referencesCorami, A., Mignardi, S., Ferrini, V., Cadmium removal from single- and multi-metal solutions by sorption on hydroxyapatite (2008) J. Colloid Interface Sci., 317 (2), pp. 402-408
dc.relation.referencesDebela, F., Thring, R.W., Arocena, J.M., Immobilization of heavy metals by co-pyrolysis of contaminated soil with woody biomass (2012) Water. Air. Soil Pollut., 223 (3), pp. 1161-1170
dc.relation.referencesDelgadillo-Velasco, L., Hernández-Montoya, V., Montes-Morán, M.A., Gómez, R.T., Cervantes, F.J., Recovery of different types of hydroxyapatite by precipitation of phosphates of wastewater from anodizing industry (2020) J. Clean. Prod., 242, p. 118564
dc.relation.referencesFerri, M., Campisi, S., Scavini, M., Evangelisti, C., Carniti, P., Gervasini, A., In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite (2019) Appl. Surf. Sci., 475, pp. 397-409
dc.relation.referencesFlores-cano, J.V., Leyva-ramos, R., Mendoza-barron, J., Labrada-delgado, G.J., Guerrero-coronado, R.M., Aragón-pi, A., Sorption mechanism of Cd(II) from water solution onto chicken eggshell (2013) Appl. Surf. Sci., 276, pp. 682-690
dc.relation.referencesGrumezescu, A.M., Ghitulica, C.D., Voicu, G., Huang, K.-S., Yang, C.-H., Ficai, A., Vasile, B.S., Chifiriuc, M.C., New silica nanostructure for the improved delivery of topical antibiotics used in the treatment of staphylococcal cutaneous infections (2014) Int. J. Pharm., 463 (2), pp. 170-176
dc.relation.referencesGuimarães, T., Paquini, L.D., Lyrio Ferraz, B.R., Roberto Profeti, L.P., Profeti, D., Efficient removal of Cu(II) and Cr(III) contaminants from aqueous solutions using marble waste powder (2020) J. Environ. Chem. Eng., 8 (4), p. 103972
dc.relation.referencesGupta, V.K., Ali, I., Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater (2000) Sep. Purif. Technol., 18 (2), pp. 131-140
dc.relation.referencesHageman, P.L., Briggs, P.H., Desborough, G.A., Lamothe, P.J., Theodorakos, P.J., Synthetic Precipitation Leaching Procedure (Splp) Leachate Chemistry Data for Solid Mine- Waste Composite Samples From Southwestern New Mexico, and Leadville, Colorado (2000) U.S. Geol. Surv., 22
dc.relation.referencesHASAN, S., TALAT, M., RAI, S., Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes) (2007) Bioresour. Technol., 98 (4), pp. 918-928
dc.relation.referencesHu, H., Li, X., Huang, P., Zhang, Q., Yuan, W., Efficient removal of copper from wastewater by using mechanically activated calcium carbonate (2017) J. Environ. Manage., 203, pp. 1-7
dc.relation.referencesIvanets, A.I., Kitikova, N.V., Shashkova, I.L., Roshchina, M.Y., Srivastava, V., Sillanpää, M., Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution (2019) J. Water Process Eng., 32, p. 100963
dc.relation.referencesKumpiene, J., Lagerkvist, A., Maurice, C., Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review (2008) Waste Manag., 28 (1), pp. 215-225
dc.relation.referencesLee, H.H., Owens, V.N., Park, S., Kim, J., Hong, C.O., Adsorption and precipitation of cadmium affected by chemical form and addition rate of phosphate in soils having different levels of cadmium (2018) Chemosphere, 206, pp. 369-375
dc.relation.referencesLi, A.Y., Deng, H., Jiang, Y.H., Ye, C.H., Yu, B.G., Zhou, X.L., Ma, A.Y., Superefficient Removal of Heavy Metals from Wastewater by Mg-Loaded Biochars: Adsorption Characteristics and Removal Mechanisms (2020) Langmuir, 36 (31), pp. 9160-9174
dc.relation.referencesLi, M., Lou, Z., Wang, Y., Liu, Q., Zhang, Y., Zhou, J., Qian, G., Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar (2015) Chemosphere, 119, pp. 778-785
dc.relation.referencesLi, Q., Zhong, H., Cao, Y., Effects of the joint application of phosphate rock, ferric nitrate and plant ash on the immobility of As, Pb and Cd in soils (2020) J. Environ. Manage., 265, p. 110576
dc.relation.referencesLiu, C., Ye, J., Lin, Y., Wu, J., Price, G.W., Burton, D., Wang, Y., Removal of Cadmium (II) using water hyacinth (Eichhornia crassipes) biochar alginate beads in aqueous solutions (2020) Environ. Pollut., 264, p. 114785
dc.relation.referencesLiu, G., Li, Z., Xu, L., Xu, X., Huang, Q., Zeng, Y., Wen, M., The dynamics and adsorption of Cd (II) onto hydroxyapatite attapulgite composites from aqueous solution (2018) J. Sol-Gel Sci. Technol., 87 (2), pp. 269-284
dc.relation.referencesLiu, Y., Zhang, R., Sun, Z., Shen, Q., Li, Y., Wang, Y., Xia, S., Wang, X., Remediation of artificially contaminated soil and groundwater with copper using hydroxyapatite/calcium silicate hydrate recovered from phosphorus-rich wastewater (2021) Environ. Pollut., 272, p. 115978
dc.relation.referencesLower, S.K., Maurice, P.A., Traina, S.J., Simultaneous dissolution of hydroxylapatite and precipitation of hydroxypyromorphite: direct evidence of homogeneous nucleation (1998) Geochim. Cosmochim. Acta, 62 (10), pp. 1773-1780
dc.relation.referencesMahdavi, S., Jalali, M., Afkhami, A., Heavy metals removal from aqueous solutions by Al2O3 nanoparticles modified with natural and chemical modifiers (2015) Clean Technol. Environ. Policy, 17 (1), pp. 85-102
dc.relation.referencesMobasherpour, I., Salahi, E., Pazouki, M., Removal of divalent cadmium cations by means of synthetic nano crystallite hydroxyapatite (2011) Desalination, 266 (1-3), pp. 142-148
dc.relation.referencesNagarajan, D., Venkatanarasimhan, S., Kinetics and mechanism of efficient removal of Cu(II) ions from aqueous solutions using ethylenediamine functionalized cellulose sponge (2020) Int. J. Biol. Macromol., 148, pp. 988-998
dc.relation.referencesNiu, C., Li, S., Zhou, G., Wang, Y., Dong, X., Cao, X., Preparation and characterization of magnetic modified bone charcoal for removing Cu2+ ions from industrial and mining wastewater (2021) J. Environ. Manage., 297, p. 113221
dc.relation.referencesNyamunda, B.C., Chivhanga, T., Guyo, U., Chigondo, F., Removal of Zn (II) and Cu (II) Ions from Industrial Wastewaters Using Magnetic Biochar Derived from Water Hyacinth (2019) J. Eng. (United Kingdom), 2019, pp. 1-11
dc.relation.referencesOsman, A.M., Hendi, A.H., Saleh, T.A., Simultaneous adsorption of dye and toxic metal ions using an interfacially polymerized silica/polyamide nanocomposite: Kinetic and thermodynamic studies (2020) J. Mol. Liq., 314, p. 113640
dc.relation.referencesPapandreou, A., Stournaras, C.J., Panias, D., Copper and cadmium adsorption on pellets made from fired coal fly ash (2007) J. Hazard. Mater., 148 (3), pp. 538-547
dc.relation.referencesPark, J.-H., Eom, J.-H., Lee, S.-L., Hwang, S.-W., Kim, S.-H., Kang, S.-W., Yun, J.-J., Seo, D.-C., Exploration of the potential capacity of fly ash and bottom ash derived from wood pellet-based thermal power plant for heavy metal removal (2020) Sci. Total Environ., 740, p. 140205
dc.relation.referencesQambrani, N.A., Rahman, M.M., Won, S., Shim, S., Ra, C., Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review (2017) Renew. Sustain. Energy Rev., 79, pp. 255-273
dc.relation.referencesRamirez, A., Pérez, S., Flórez, E., Acelas, N., Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer (2021) J. Environ. Chem. Eng., 9 (1), p. 104776
dc.relation.referencesReig, F.B., Adelantado, J.V.G., Moya Moreno, M.C.M., FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method (2002) Application to geological samples. Talanta, 58, pp. 811-821
dc.relation.referencesSaleh, T.A., Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon (2018) J. Clean. Prod., 172, pp. 2123-2132
dc.relation.referencesSarkar, M., Rahman, A.K.M.L., Bhoumik, N.C., Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder (2017) Water Resour. Ind., 17, pp. 1-6
dc.relation.referencesSen, T.K., Sarzali, M.V., Removal of cadmium metal ion (Cd2+) from its aqueous solution by aluminium oxide (Al2O3): A kinetic and equilibrium study (2008) Chem. Eng. J., 142 (3), pp. 256-262
dc.relation.referencesSeshadri, B., Bolan, N.S., Choppala, G., Kunhikrishnan, A., Sanderson, P., Wang, H., Currie, L.D., Kim, K., Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil (2017) Chemosphere, 184, pp. 197-206
dc.relation.referencesSheha, R.R., Sorption behavior of Zn(II) ions on synthesized hydroxyapatites (2007) J. Colloid Interface Sci., 310 (1), pp. 18-26
dc.relation.referencesStietiya, M.H., Wang, J.J., Zinc and Cadmium Adsorption to Aluminum Oxide Nanoparticles Affected by Naturally Occurring Ligands (2014) J. Environ. Qual., 43 (2), pp. 498-506
dc.relation.referencesSuzuki, T., Hatsushika, T., Miyake, M., Synthetic hydroxyapatites as inorganic cation exchangers. Part 2. J. Chem. Soc. Faraday Trans. 1 Phys (1982) Chem. Condens. Phases, 78, pp. 3605-3611
dc.relation.referencesTakeuchi, Y., Arai, H., Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder (1990) J. Chem. Eng. JAPAN, 23 (1), pp. 75-80
dc.relation.referencesTerra, J., Gonzalez, G.B., Rossi, A.M., Eon, J.G., Ellis, D.E., Theoretical and experimental studies of substitution of cadmium into hydroxyapatite (2010) Phys. Chem. Chem. Phys., 12, pp. 15490-15500
dc.relation.referencesThanh, D.N., Novák, P., Vejpravova, J., Vu, H.N., Lederer, J., Munshi, T., Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods (2018) J. Magn. Magn. Mater., 456, pp. 451-460
dc.relation.referencesEpa, U.S., Maximum contaminant level goals and national primary drinking water regulations for lead and copper
dc.relation.referencesfinal rule (1991) Fed Regist, 56, pp. 26460-26564
dc.relation.referencesWen, T., Zhao, Y., Zhang, T., Xiong, B., Hu, H., Zhang, Q., Song, S., Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate (2019) Chemosphere, 230, pp. 127-135
dc.relation.referencesWilson, F., Tremain, P., Moghtaderi, B., Characterization of Biochars Derived from Pyrolysis of Biomass and Calcium Oxide Mixtures (2018) Energy and Fuels, 32 (4), pp. 4167-4177
dc.relation.referencesWu, J., Wang, T., Wang, J., Zhang, Y., Pan, W.-P., A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity (2021) Sci. Total Environ., 754, p. 142150
dc.relation.referencesXu, Y., Schwartz, F.W., Lead immobilization by hydroxyapatite in aqueous solutions (1994) J. Contam. Hydrol., 15 (3), pp. 187-206
dc.relation.referencesXu, Y., Schwartz, F.W., Traina, S.J., Sorption of Zn2+ and Cd2+ on Hydroxyapatite Surfaces (1994) Environ. Sci. Technol., 28 (8), pp. 1472-1480
dc.relation.referencesYasukawa, A., Yokoyama, T., Kandori, K., Ishikawa, T., Reaction of calcium hydroxyapatite with Cd2+ and Pb2+ ions (2007) Colloids Surfaces A Physicochem. Eng. Asp., 299 (1-3), pp. 203-208
dc.relation.referencesZachara, J.M., Cowan, C.E., Resch, C.T., Sorption of divalent metals on calcite (1991) Geochim. Cosmochim. Acta, 55 (6), pp. 1549-1562
dc.relation.referencesZhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73
dc.relation.referencesZhu, X.-H., Li, J., Luo, J.-H., Jin, Y., Zheng, D., Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites (2017) J. Taiwan Inst. Chem. Eng., 70, pp. 200-208
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem