Show simple item record

dc.contributor.authorRios J
dc.contributor.authorRestrepo A
dc.contributor.authorZuleta A
dc.contributor.authorBolívar F
dc.contributor.authorCastaño J
dc.contributor.authorCorrea E
dc.contributor.authorEcheverria F.
dc.date.accessioned2022-09-14T14:33:42Z
dc.date.available2022-09-14T14:33:42Z
dc.date.created2021
dc.identifier.issn20754701
dc.identifier.urihttp://hdl.handle.net/11407/7441
dc.descriptionCommercial powders of pure magnesium were processed by high-energy ball milling. The microstructural and morphological evolution of the powders was studied using scanning electron microscopy (SEM), energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). From the results obtained, it was determined that the ball size is the most influential milling parameter. This was because balls of 1 mm diameter were used after a previous stage of milling with larger balls (i.e., 10 and 3 mm). The powder particles presented an unusual morphology with respect to those observed in the Mg-milling literature and recrystallization phenomena. Moreover, the result strongly varied depending on the ball-to-powder weight ratio (BPR) used during the milling process. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85117056523&doi=10.3390%2fmet11101621&partnerID=40&md5=11e539b7a62eda77204bd5cf9211aafc
dc.sourceMetals
dc.titleEffect of ball size on the microstructure and morphology of mg powders processed by high-energy ball milling
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Materiales
dc.type.spaArtículo
dc.identifier.doi10.3390/met11101621
dc.subject.keywordMagnesium powderseng
dc.subject.keywordMicrostructureeng
dc.subject.keywordMilling parameterseng
dc.subject.keywordMorphological changeseng
dc.subject.keywordRecrystallizationeng
dc.relation.citationvolume11
dc.relation.citationissue10
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationRios, J., Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, 050010, Colombia
dc.affiliationRestrepo, A., Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, 050010, Colombia
dc.affiliationZuleta, A., Grupo de Investigación de Estudios en Diseño—GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Circular 1 No 70-01, Medellín, 050031, Colombia
dc.affiliationBolívar, F., Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, 050010, Colombia
dc.affiliationCastaño, J., Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, 050010, Colombia
dc.affiliationCorrea, E., Grupo de Investigación Materiales con Impacto—MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30-65, Medellín, 050026, Colombia
dc.affiliationEcheverria, F., Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, 050010, Colombia
dc.relation.referencesGhayour, H., Abdellahi, M., Bahmanpour, M., Optimization of the high energy ball-milling: Modeling and parametric study (2016) Powder Technol, 291, pp. 7-13. , [CrossRef]
dc.relation.referencesLiao, H., Chen, J., Peng, L., Han, J., Yi, H., Zheng, F., Wu, Y., Ding, W., Fabrication and characterization of magnesium matrix composite processed by combination of friction stir processing and high-energy ball milling (2017) Mater. Sci. Eng. A, 683, pp. 207-214. , [CrossRef]
dc.relation.referencesPhasha, M., Maweja, K., Babst, C., Mechanical alloying by ball milling of Ti and Mg elemental powders: Operation condition considerations (2010) J. Alloys Compd, 492, pp. 201-207. , [CrossRef]
dc.relation.referencesKim, H.N., Kim, J.W., Kim, M.S., Lee, B.H., Kim, J.C., Effects of Ball Size on the Grinding Behavior of Talc Using a High-Energy Ball Mill (2019) Minerals, 9, p. 668. , [CrossRef]
dc.relation.referencesWu, Z.M., Liang, Y.X., Fan, Y., Wang, P.P., Du, J.L., Zhao, Y.B., Fu, E.G., The ball to powder ratio (BPR) dependent morphology and microstructure of tungsten powder refined by ball milling (2018) Powder Technol, 339, pp. 256-263. , [CrossRef]
dc.relation.referencesFahimpour, V., Sadrnezhaad, S.K., Breakage Mechanism of Mg During Ball Milling with NaCl, KCl and Urea for Nanopowder Production (2017) Trans. Indian Inst. Met, 70, pp. 1783-1793. , [CrossRef]
dc.relation.referencesChaubey, A.K., Scudino, S., Khoshkhoo, M.S., Prashanth, K.G., Mukhopadhyay, N.K., Mishra, B.K., Eckert, J., Synthesis and characterization of nanocrystallineMg-7.4%Al powders produced by mechanical alloying (2013) Metals, 3, pp. 58-68. , [CrossRef]
dc.relation.referencesRestrepo, A.H., Ríos, J.M., Arango, F., Correa, E., Zuleta, A.A., Valencia-Escobar, A., Bolivar, F.J., Echeverría, F.E., Characterization of titanium powders processed in n-hexane by high-energy ball milling (2020) Int. J. Adv. Manuf. Technol, 110, pp. 1681-1690. , [CrossRef]
dc.relation.referencesCai, X.C., Sun, B.R., Liu, Y., Zhang, N., Zhang, J.H., Yu, H., Huang, J.Y., Shen, T.D., Selection of grain-boundary segregation elements for achieving stable and strong nanocrystalline Mg (2018) Mater. Sci. Eng. A, 717, pp. 144-153. , [CrossRef]
dc.relation.referencesHwang, S., Nishimura, C., McCormick, P., Mechanical milling of magnesium powder (2001) Mater. Sci. Eng. A, 318, pp. 22-33. , [CrossRef]
dc.relation.referencesÇakmak, G., Öztürk, T., Milling of magnesium powders without additives (2013) Powder Technol, 237, pp. 484-488. , [CrossRef]
dc.relation.referencesFahimpour, V., Sadrnezhaad, S.K., Magnesium nanopowder for hydrogen absorption and ammonium perchlorate decomposition (2012) Mater. Lett, 85, pp. 128-131. , [CrossRef]
dc.relation.referencesGalindez, Y., Correa, E., Zuleta, A.A., Valencia-Escobar, A., Calderon, D., Toro, L., Chacón, P., Echeverría, E.F., Improved Mg–Al–Zn Magnesium Alloys Produced by High Energy Milling and Hot Sintering (2019) Met. Mater. Int, , [CrossRef]
dc.relation.referencesSuśniak, M., Pałka, P., Karwan-Baczewska, J., Influence of milling time on the crystallite size of AlSi5Cu2/SiC composite powder (2016) Arch. Metall. Mater, 61, pp. 977-980. , [CrossRef]
dc.relation.referencesGhasemi, A., Penther, D., Kamrani, S., Microstructure and nanoindentation analysis of Mg-SiC nanocomposite powders synthesized by mechanical milling (2018) Mater. Charact, 142, pp. 137-143. , [CrossRef]
dc.relation.referencesHosseini-Gourajoubi, F., Pourabdoli, M., Uner, D., Raygan, S., Effect of process control agents on synthesizing nano-structured 2Mg–9Ni–Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2 (2015) Adv. Powder Technol, 26, pp. 448-453. , [CrossRef]
dc.relation.referencesPark, K., Park, J., Kwon, H., Effect of intermetallic compound on the Al-Mg composite materials fabricated by mechanical ball milling and spark plasma sintering (2018) J. Alloys Compd, 739, pp. 311-318. , [CrossRef]
dc.relation.referencesKamrani, S., Penther, D., Ghasemi, A., Riedel, R., Fleck, C., Microstructural characterization of Mg-SiC nanocomposite synthesized by high energy ball milling (2018) Adv. Powder Technol, 29, pp. 1742-1748. , [CrossRef]
dc.relation.referencesBemanifar, S., Rajabi, M., Hosseinipour, S.J., Microstructural Characterization of Mg-SiC Nanocomposite Powders Fabricated by High Energy Mechanical Milling (2017) Silicon, 9, pp. 823-827. , [CrossRef]
dc.relation.referencesPonhan, K., Tassenberg, K., Weston, D., Nicholls, K.G.M., Thornton, R., Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg-SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling (2020) Ceram. Int, 46, pp. 26956-26969. , [CrossRef]
dc.relation.referencesJabbari-Taleghani, M.A., Torralba, J.M., Hot workability of nanocrystalline AZ91 magnesium alloy (2014) J. Alloys Compd, 595, pp. 1-7. , [CrossRef]
dc.relation.referencesHuang, J.Y., Wu, Y.K., Ye, H.Q., Ball milling of ductile metals (1995) Mater. Sci. Eng. A, 199, pp. 165-172. , [CrossRef]
dc.relation.referencesRousselot, S., Bichat, M.P., Guay, D., Roué, L., Structure and electrochemical behaviour of metastable Mg50Ti50 alloy prepared by ball milling (2008) J. Power Sour, 175, pp. 621-624. , [CrossRef]
dc.relation.referencesChen, H., Xiao, H., Wang, Y., Liu, J., Yang, Q., Feng, X., Insight into the energy conversion and structural evolution of magnesium hydride during high-energy ball milling for its controllable synthesis (2020) J. Alloys Compd, 836, p. 155312. , [CrossRef]
dc.relation.referencesAlaneme, K.K., Okotete, E.A., Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent developments (2017) J. Magnes. Alloy, 5, pp. 460-475. , [CrossRef]
dc.relation.referencesAsano, K., Enoki, H., Akiba, E., Synthesis process of Mg-Ti BCC alloys by means of ball milling (2009) J. Alloys Compd, 486, pp. 115-123. , [CrossRef]
dc.relation.referencesFecht, H.J., Hellstern, E., Fu, Z., Johnson, W.L., Nanocrystalline metals prepared by high-energy ball milling (1990) Metall. Trans. A, 21, pp. 2333-2337. , [CrossRef]
dc.relation.referencesKim, K.R., Ahn, J.W., Kim, G.H., Han, J.H., Cho, K.K., Roh, J.S., Kim, W.J., Kim, H.S., Corrosion behavior of magnesium powder fabricated by high-energy ball milling and spark plasma sintering (2014) Met. Mater. Int, 20, pp. 1095-1101. , [CrossRef]
dc.relation.referencesZhou, H., Hu, L., Sun, H., Chen, X., Synthesis of nanocrystalline Mg-based Mg-Ti composite powders by mechanical milling (2015) Mater. Charact, 106, pp. 44-51. , [CrossRef]
dc.relation.referencesEl-Eskandarany, M.S., Controlling the powder milling process (2015) Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, pp. 48-83. , Elsevier: Amsterdam, The Netherlands, ISBN 9781455777525
dc.relation.referencesZou, C., Long, Y., Zheng, X., Lin, H.T., Zhang, F., Effect of ball sizes on synthesis of OsB2 powders by mechanical alloying (2017) Ceram. Int, 43, pp. 17111-17115. , [CrossRef]
dc.relation.referencesHong, S.-M., Park, J.-J., Park, E.-K., Kim, K.-Y., Lee, J.-G., Lee, M.-K., Rhee, C.-K., Lee, J.K., Fabrication of titanium carbide nano-powders by a very high speed planetary ball milling with a help of process control agents (2015) Powder Technol, 274, pp. 393-401. , [CrossRef]
dc.relation.referencesHlabangana, N., Danha, G., Muzenda, E., Effect of ball and feed particle size distribution on the milling efficiency of a ball mill: An attainable region approach (2018) S. Afr. J. Chem. Eng, 25, pp. 79-84. , [CrossRef]
dc.relation.referencesLiang, Y.X., Wu, Z.M., Fu, E.G., Du, J.L., Wang, P.P., Zhao, Y.B., Qiu, Y.H., Hu, Z.Y., Refinement process and mechanisms of tungsten powder by high energy ball milling (2017) Int. J. Refract. Met. Hard Mater, 67, pp. 1-8. , [CrossRef]
dc.relation.referencesYazdani, A., Hadianfard, M.J., Salahinejad, E., A system dynamics model to estimate energy, temperature, and particle size in planetary ball milling (2013) J. Alloys Compd, 555, pp. 108-111. , [CrossRef]
dc.relation.referencesBurmeister, C., Titscher, L., Breitung-Faes, S., Kwade, A., Dry grinding in planetary ball mills: Evaluation of a stressing model (2018) Adv. Powder Technol, 29, pp. 191-201. , [CrossRef]
dc.relation.referencesRuiz-Navas, E.M., Edil da Costa, C., Velasco López, F., Torralba Castelló, J.M., Aleación mecánica: Método de obtención de polvos metálicos y de materiales compuestos (2000) Rev. Metal, 36, pp. 279-286. , [CrossRef]
dc.relation.referencesSuryanarayana, C., Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials (2019) Research, 2019, p. 4219812. , [CrossRef]
dc.relation.referencesCao, P., Lu, L., Lai, M.O., Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying (2001) Mater. Res. Bull, 36, pp. 981-988. , [CrossRef]
dc.relation.referencesYu, H., Sun, Y., Hu, L., Wan, Z., Zhou, H., The effect of Ti addition on microstructure evolution of AZ61 Mg alloy during mechanical milling (2017) J. Alloys Compd, 704, pp. 537-544. , [CrossRef]
dc.relation.referencesWang, X., Jiang, L., Zhang, D., Rupert, T.J., Beyerlein, I.J., Mahajan, S., Lavernia, E.J., Schoenung, J.M., Revealing the deformation mechanisms for room-temperature compressive superplasticity in nanocrystalline magnesium (2020) Materialia, 11, p. 100731. , [CrossRef]
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record