dc.contributor.author | Rios J | |
dc.contributor.author | Restrepo A | |
dc.contributor.author | Zuleta A | |
dc.contributor.author | Bolívar F | |
dc.contributor.author | Castaño J | |
dc.contributor.author | Correa E | |
dc.contributor.author | Echeverria F. | |
dc.date.accessioned | 2022-09-14T14:33:42Z | |
dc.date.available | 2022-09-14T14:33:42Z | |
dc.date.created | 2021 | |
dc.identifier.issn | 20754701 | |
dc.identifier.uri | http://hdl.handle.net/11407/7441 | |
dc.description | Commercial powders of pure magnesium were processed by high-energy ball milling. The microstructural and morphological evolution of the powders was studied using scanning electron microscopy (SEM), energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). From the results obtained, it was determined that the ball size is the most influential milling parameter. This was because balls of 1 mm diameter were used after a previous stage of milling with larger balls (i.e., 10 and 3 mm). The powder particles presented an unusual morphology with respect to those observed in the Mg-milling literature and recrystallization phenomena. Moreover, the result strongly varied depending on the ball-to-powder weight ratio (BPR) used during the milling process. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. | eng |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117056523&doi=10.3390%2fmet11101621&partnerID=40&md5=11e539b7a62eda77204bd5cf9211aafc | |
dc.source | Metals | |
dc.title | Effect of ball size on the microstructure and morphology of mg powders processed by high-energy ball milling | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería de Materiales | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.3390/met11101621 | |
dc.subject.keyword | Magnesium powders | eng |
dc.subject.keyword | Microstructure | eng |
dc.subject.keyword | Milling parameters | eng |
dc.subject.keyword | Morphological changes | eng |
dc.subject.keyword | Recrystallization | eng |
dc.relation.citationvolume | 11 | |
dc.relation.citationissue | 10 | |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.affiliation | Rios, J., Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, 050010, Colombia | |
dc.affiliation | Restrepo, A., Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, 050010, Colombia | |
dc.affiliation | Zuleta, A., Grupo de Investigación de Estudios en Diseño—GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Circular 1 No 70-01, Medellín, 050031, Colombia | |
dc.affiliation | Bolívar, F., Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, 050010, Colombia | |
dc.affiliation | Castaño, J., Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, 050010, Colombia | |
dc.affiliation | Correa, E., Grupo de Investigación Materiales con Impacto—MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30-65, Medellín, 050026, Colombia | |
dc.affiliation | Echeverria, F., Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, 050010, Colombia | |
dc.relation.references | Ghayour, H., Abdellahi, M., Bahmanpour, M., Optimization of the high energy ball-milling: Modeling and parametric study (2016) Powder Technol, 291, pp. 7-13. , [CrossRef] | |
dc.relation.references | Liao, H., Chen, J., Peng, L., Han, J., Yi, H., Zheng, F., Wu, Y., Ding, W., Fabrication and characterization of magnesium matrix composite processed by combination of friction stir processing and high-energy ball milling (2017) Mater. Sci. Eng. A, 683, pp. 207-214. , [CrossRef] | |
dc.relation.references | Phasha, M., Maweja, K., Babst, C., Mechanical alloying by ball milling of Ti and Mg elemental powders: Operation condition considerations (2010) J. Alloys Compd, 492, pp. 201-207. , [CrossRef] | |
dc.relation.references | Kim, H.N., Kim, J.W., Kim, M.S., Lee, B.H., Kim, J.C., Effects of Ball Size on the Grinding Behavior of Talc Using a High-Energy Ball Mill (2019) Minerals, 9, p. 668. , [CrossRef] | |
dc.relation.references | Wu, Z.M., Liang, Y.X., Fan, Y., Wang, P.P., Du, J.L., Zhao, Y.B., Fu, E.G., The ball to powder ratio (BPR) dependent morphology and microstructure of tungsten powder refined by ball milling (2018) Powder Technol, 339, pp. 256-263. , [CrossRef] | |
dc.relation.references | Fahimpour, V., Sadrnezhaad, S.K., Breakage Mechanism of Mg During Ball Milling with NaCl, KCl and Urea for Nanopowder Production (2017) Trans. Indian Inst. Met, 70, pp. 1783-1793. , [CrossRef] | |
dc.relation.references | Chaubey, A.K., Scudino, S., Khoshkhoo, M.S., Prashanth, K.G., Mukhopadhyay, N.K., Mishra, B.K., Eckert, J., Synthesis and characterization of nanocrystallineMg-7.4%Al powders produced by mechanical alloying (2013) Metals, 3, pp. 58-68. , [CrossRef] | |
dc.relation.references | Restrepo, A.H., Ríos, J.M., Arango, F., Correa, E., Zuleta, A.A., Valencia-Escobar, A., Bolivar, F.J., Echeverría, F.E., Characterization of titanium powders processed in n-hexane by high-energy ball milling (2020) Int. J. Adv. Manuf. Technol, 110, pp. 1681-1690. , [CrossRef] | |
dc.relation.references | Cai, X.C., Sun, B.R., Liu, Y., Zhang, N., Zhang, J.H., Yu, H., Huang, J.Y., Shen, T.D., Selection of grain-boundary segregation elements for achieving stable and strong nanocrystalline Mg (2018) Mater. Sci. Eng. A, 717, pp. 144-153. , [CrossRef] | |
dc.relation.references | Hwang, S., Nishimura, C., McCormick, P., Mechanical milling of magnesium powder (2001) Mater. Sci. Eng. A, 318, pp. 22-33. , [CrossRef] | |
dc.relation.references | Çakmak, G., Öztürk, T., Milling of magnesium powders without additives (2013) Powder Technol, 237, pp. 484-488. , [CrossRef] | |
dc.relation.references | Fahimpour, V., Sadrnezhaad, S.K., Magnesium nanopowder for hydrogen absorption and ammonium perchlorate decomposition (2012) Mater. Lett, 85, pp. 128-131. , [CrossRef] | |
dc.relation.references | Galindez, Y., Correa, E., Zuleta, A.A., Valencia-Escobar, A., Calderon, D., Toro, L., Chacón, P., Echeverría, E.F., Improved Mg–Al–Zn Magnesium Alloys Produced by High Energy Milling and Hot Sintering (2019) Met. Mater. Int, , [CrossRef] | |
dc.relation.references | Suśniak, M., Pałka, P., Karwan-Baczewska, J., Influence of milling time on the crystallite size of AlSi5Cu2/SiC composite powder (2016) Arch. Metall. Mater, 61, pp. 977-980. , [CrossRef] | |
dc.relation.references | Ghasemi, A., Penther, D., Kamrani, S., Microstructure and nanoindentation analysis of Mg-SiC nanocomposite powders synthesized by mechanical milling (2018) Mater. Charact, 142, pp. 137-143. , [CrossRef] | |
dc.relation.references | Hosseini-Gourajoubi, F., Pourabdoli, M., Uner, D., Raygan, S., Effect of process control agents on synthesizing nano-structured 2Mg–9Ni–Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2 (2015) Adv. Powder Technol, 26, pp. 448-453. , [CrossRef] | |
dc.relation.references | Park, K., Park, J., Kwon, H., Effect of intermetallic compound on the Al-Mg composite materials fabricated by mechanical ball milling and spark plasma sintering (2018) J. Alloys Compd, 739, pp. 311-318. , [CrossRef] | |
dc.relation.references | Kamrani, S., Penther, D., Ghasemi, A., Riedel, R., Fleck, C., Microstructural characterization of Mg-SiC nanocomposite synthesized by high energy ball milling (2018) Adv. Powder Technol, 29, pp. 1742-1748. , [CrossRef] | |
dc.relation.references | Bemanifar, S., Rajabi, M., Hosseinipour, S.J., Microstructural Characterization of Mg-SiC Nanocomposite Powders Fabricated by High Energy Mechanical Milling (2017) Silicon, 9, pp. 823-827. , [CrossRef] | |
dc.relation.references | Ponhan, K., Tassenberg, K., Weston, D., Nicholls, K.G.M., Thornton, R., Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg-SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling (2020) Ceram. Int, 46, pp. 26956-26969. , [CrossRef] | |
dc.relation.references | Jabbari-Taleghani, M.A., Torralba, J.M., Hot workability of nanocrystalline AZ91 magnesium alloy (2014) J. Alloys Compd, 595, pp. 1-7. , [CrossRef] | |
dc.relation.references | Huang, J.Y., Wu, Y.K., Ye, H.Q., Ball milling of ductile metals (1995) Mater. Sci. Eng. A, 199, pp. 165-172. , [CrossRef] | |
dc.relation.references | Rousselot, S., Bichat, M.P., Guay, D., Roué, L., Structure and electrochemical behaviour of metastable Mg50Ti50 alloy prepared by ball milling (2008) J. Power Sour, 175, pp. 621-624. , [CrossRef] | |
dc.relation.references | Chen, H., Xiao, H., Wang, Y., Liu, J., Yang, Q., Feng, X., Insight into the energy conversion and structural evolution of magnesium hydride during high-energy ball milling for its controllable synthesis (2020) J. Alloys Compd, 836, p. 155312. , [CrossRef] | |
dc.relation.references | Alaneme, K.K., Okotete, E.A., Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent developments (2017) J. Magnes. Alloy, 5, pp. 460-475. , [CrossRef] | |
dc.relation.references | Asano, K., Enoki, H., Akiba, E., Synthesis process of Mg-Ti BCC alloys by means of ball milling (2009) J. Alloys Compd, 486, pp. 115-123. , [CrossRef] | |
dc.relation.references | Fecht, H.J., Hellstern, E., Fu, Z., Johnson, W.L., Nanocrystalline metals prepared by high-energy ball milling (1990) Metall. Trans. A, 21, pp. 2333-2337. , [CrossRef] | |
dc.relation.references | Kim, K.R., Ahn, J.W., Kim, G.H., Han, J.H., Cho, K.K., Roh, J.S., Kim, W.J., Kim, H.S., Corrosion behavior of magnesium powder fabricated by high-energy ball milling and spark plasma sintering (2014) Met. Mater. Int, 20, pp. 1095-1101. , [CrossRef] | |
dc.relation.references | Zhou, H., Hu, L., Sun, H., Chen, X., Synthesis of nanocrystalline Mg-based Mg-Ti composite powders by mechanical milling (2015) Mater. Charact, 106, pp. 44-51. , [CrossRef] | |
dc.relation.references | El-Eskandarany, M.S., Controlling the powder milling process (2015) Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, pp. 48-83. , Elsevier: Amsterdam, The Netherlands, ISBN 9781455777525 | |
dc.relation.references | Zou, C., Long, Y., Zheng, X., Lin, H.T., Zhang, F., Effect of ball sizes on synthesis of OsB2 powders by mechanical alloying (2017) Ceram. Int, 43, pp. 17111-17115. , [CrossRef] | |
dc.relation.references | Hong, S.-M., Park, J.-J., Park, E.-K., Kim, K.-Y., Lee, J.-G., Lee, M.-K., Rhee, C.-K., Lee, J.K., Fabrication of titanium carbide nano-powders by a very high speed planetary ball milling with a help of process control agents (2015) Powder Technol, 274, pp. 393-401. , [CrossRef] | |
dc.relation.references | Hlabangana, N., Danha, G., Muzenda, E., Effect of ball and feed particle size distribution on the milling efficiency of a ball mill: An attainable region approach (2018) S. Afr. J. Chem. Eng, 25, pp. 79-84. , [CrossRef] | |
dc.relation.references | Liang, Y.X., Wu, Z.M., Fu, E.G., Du, J.L., Wang, P.P., Zhao, Y.B., Qiu, Y.H., Hu, Z.Y., Refinement process and mechanisms of tungsten powder by high energy ball milling (2017) Int. J. Refract. Met. Hard Mater, 67, pp. 1-8. , [CrossRef] | |
dc.relation.references | Yazdani, A., Hadianfard, M.J., Salahinejad, E., A system dynamics model to estimate energy, temperature, and particle size in planetary ball milling (2013) J. Alloys Compd, 555, pp. 108-111. , [CrossRef] | |
dc.relation.references | Burmeister, C., Titscher, L., Breitung-Faes, S., Kwade, A., Dry grinding in planetary ball mills: Evaluation of a stressing model (2018) Adv. Powder Technol, 29, pp. 191-201. , [CrossRef] | |
dc.relation.references | Ruiz-Navas, E.M., Edil da Costa, C., Velasco López, F., Torralba Castelló, J.M., Aleación mecánica: Método de obtención de polvos metálicos y de materiales compuestos (2000) Rev. Metal, 36, pp. 279-286. , [CrossRef] | |
dc.relation.references | Suryanarayana, C., Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials (2019) Research, 2019, p. 4219812. , [CrossRef] | |
dc.relation.references | Cao, P., Lu, L., Lai, M.O., Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying (2001) Mater. Res. Bull, 36, pp. 981-988. , [CrossRef] | |
dc.relation.references | Yu, H., Sun, Y., Hu, L., Wan, Z., Zhou, H., The effect of Ti addition on microstructure evolution of AZ61 Mg alloy during mechanical milling (2017) J. Alloys Compd, 704, pp. 537-544. , [CrossRef] | |
dc.relation.references | Wang, X., Jiang, L., Zhang, D., Rupert, T.J., Beyerlein, I.J., Mahajan, S., Lavernia, E.J., Schoenung, J.M., Revealing the deformation mechanisms for room-temperature compressive superplasticity in nanocrystalline magnesium (2020) Materialia, 11, p. 100731. , [CrossRef] | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |