Mostrar el registro sencillo del ítem

dc.contributor.authorRios J.M
dc.contributor.authorRestrepo A.H
dc.contributor.authorZuleta A.A
dc.contributor.authorJavier Bolívar F
dc.contributor.authorCastaño J.G
dc.contributor.authorCorrea E
dc.contributor.authorEcheverria F.
dc.date.accessioned2022-09-14T14:33:43Z
dc.date.available2022-09-14T14:33:43Z
dc.date.created2022
dc.identifier.issn2683768
dc.identifier.urihttp://hdl.handle.net/11407/7445
dc.descriptionCommercial powders of magnesium were processed by high-energy ball milling (HEBM) using a two-stage composite process. The microstructural and morphological evolution of the powders was studied using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDX), and X-ray diffraction (XRD). From the results obtained, it was determined that the energy transferred by means of the control of balls size and high milling speeds allowed the particles of Mg powder to deform and fracture, achieving grain refinement and particle size reduction in a relatively short time. Likewise, milling energy calculations were made to determine the effect of the milling parameters. Subsequently, milled powders were compacted and HIPed reaching a densification of 95%. Finally, mechanical tests showed that the developed process increased the hardness and compressive strength of Mg compared to the material obtained by casting. © 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.eng
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85129508547&doi=10.1007%2fs00170-022-09299-6&partnerID=40&md5=21f6dc582468e1c96bf307b40bd2ed5e
dc.sourceInternational Journal of Advanced Manufacturing Technology
dc.titleEffects of two-step high-energy ball milling process and hot isostatic pressing on the mechanical properties of PM magnesium
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Materiales
dc.type.spaArtículo
dc.identifier.doi10.1007/s00170-022-09299-6
dc.subject.keywordCompression propertieseng
dc.subject.keywordEnergy conversioneng
dc.subject.keywordHigh-energy ball millingeng
dc.subject.keywordHot isostatic pressingeng
dc.subject.keywordMagnesium powdereng
dc.subject.keywordBall millingeng
dc.subject.keywordCompressive strengtheng
dc.subject.keywordGrain refinementeng
dc.subject.keywordMagnesium castingseng
dc.subject.keywordMagnesium powdereng
dc.subject.keywordMilling (machining)eng
dc.subject.keywordParticle sizeeng
dc.subject.keywordScanning electron microscopyeng
dc.subject.keywordSinteringeng
dc.subject.keywordCommercial powderseng
dc.subject.keywordComposite processeng
dc.subject.keywordCompression propertieseng
dc.subject.keywordEnergy dispersive spectrometryeng
dc.subject.keywordHigh-energy ball millingeng
dc.subject.keywordHigh-energy ball milling processeng
dc.subject.keywordHot-isostatic pressingseng
dc.subject.keywordMicro-structuraleng
dc.subject.keywordMorphological evolutioneng
dc.subject.keywordX- ray diffractionseng
dc.subject.keywordEnergy conversioneng
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationRios, J.M., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medellin, Colombia
dc.affiliationRestrepo, A.H., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medellin, Colombia
dc.affiliationZuleta, A.A., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín UdeM, Carrera 87 No. 30–65, Medellin, Colombia
dc.affiliationJavier Bolívar, F., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medellin, Colombia
dc.affiliationCastaño, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medellin, Colombia
dc.affiliationCorrea, E., Grupo de Investigación de Estudios en Diseño – GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana UPB, Circular 1 No. 70–01, Medellín, Colombia
dc.affiliationEcheverria, F., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medellin, Colombia
dc.relation.referencesPhasha, M.J., Bolokang, A.S., Ngoepe, P.E., Solid-state transformation in nanocrystalline Ti induced by ball milling (2010) Mater Lett, 64, pp. 1215-1218
dc.relation.referencesChaubey, A.K., Scudino, S., Khoshkhoo, M.S., Synthesis and characterization of nanocrystalline Mg-7.4%Al powders produced by mechanical alloying (2013) Metals (Basel), 3, pp. 58-68
dc.relation.referencesLiao, H., Chen, J., Peng, L., Fabrication and characterization of magnesium matrix composite processed by combination of friction stir processing and high-energy ball milling (2017) Mater Sci Eng A, 683, pp. 207-214
dc.relation.referencesGhayour, H., Abdellahi, M., Bahmanpour, M., Optimization of the high energy ball-milling: modeling and parametric study (2016) Powder Technol, 291, pp. 7-13
dc.relation.referencesKhan, M.U.F., Mirza, F., Gupta, R.K., High hardness and thermal stability of nanocrystalline Mg–Al alloys synthesized by the high-energy ball milling (2018) Materialia, 4, pp. 406-416
dc.relation.referencesMojarrad, N.R., Kheirifard, R., Mousavian, R.T., Filling ratio of vial: an important parameter for ball milling (2016) J Therm Anal Calorim, 126, pp. 1097-1103
dc.relation.referencesKho, H.X., Bae, S., Bae, S., Planetary ball mill process in aspect of milling energy (2014) J Korean Powder Metall Inst, 21, pp. 155-164
dc.relation.referencesPhasha, M., Maweja, K., Babst, C., Mechanical alloying by ball milling of Ti and Mg elemental powders: operation condition considerations (2010) J Alloys Compd, 492, pp. 201-207
dc.relation.referencesKamrani, S., Penther, D., Ghasemi, A., Microstructural characterization of Mg-SiC nanocomposite synthesized by high energy ball milling (2018) Adv Powder Technol, 29, pp. 1742-1748
dc.relation.referencesYu, H., Zhou, H., Sun, Y., Microstructure thermal stability of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling (2017) J Alloys Compd, 722, pp. 39-47
dc.relation.referencesSankaranarayanan, S., Sabat, R.K., Jayalakshmi, S., Effect of hybridizing micron-sized Ti with nano-sized SiC on the microstructural evolution and mechanical response of Mg-5.6Ti composite (2013) J Alloys Compd, 575, pp. 207-217
dc.relation.referencesBemanifar, S., Rajabi, M., Hosseinipour, S.J., Microstructural characterization of Mg-SiC nanocomposite powders fabricated by high energy mechanical milling (2017) SILICON, 9, pp. 823-827
dc.relation.referencesChaubey, A.K., Scudino, S., Samadi Khoshkhoo, M., High-strength ultrafine grain Mg-7.4%Al alloy synthesized by consolidation of mechanically alloyed powders (2014) J Alloys Compd, 610, pp. 456-461
dc.relation.referencesMondet, M., Barraud, E., Lemonnier, S., Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering (2016) Acta Mater, 119, pp. 55-67
dc.relation.referencesChaudry, U.M., Hamad, K., Kim, J.G., On the ductility of magnesium based materials: a mini review (2019) J Alloys Compd, 792, pp. 652-664
dc.relation.referencesYu, H., Sun, Y., Hu, L., The effect of Ti addition on microstructure evolution of AZ61 Mg alloy during mechanical milling (2017) J Alloys Compd, 704, pp. 537-544
dc.relation.referencesYu, H., Sun, Y., Wan, Z., Nanocrystalline Ti/AZ61 magnesium matrix composite: evolution of microstructure and mechanical property during annealing treatment (2018) J Alloys Compd, 741, pp. 231-239
dc.relation.referencesJabbari-Taleghani, M.A., Torralba, J.M., Hot workability of nanocrystalline AZ91 magnesium alloy (2014) J Alloys Compd, 595, pp. 1-7
dc.relation.referencesVahid, A., Hodgson, P., Li, Y., Effect of high-energy ball milling on mechanical properties of the Mg–Nb composites fabricated through powder metallurgy process (2018) Adv Eng Mater, 20, p. 1700759
dc.relation.referencesKhan, M.U.F., Patil, A., Christudasjustus, J., Spark plasma sintering of a high-energy ball milled Mg-10 wt% Al alloy (2020) J Magnes Alloy, 8, pp. 319-328
dc.relation.referencesHübler, D., Ghasemi, A., Riedel, R., Effect of hot isostatic pressing on densification, microstructure and nanoindentation behaviour of Mg–SiC nanocomposites (2020) J Mater Sci, 55, pp. 10582-10592
dc.relation.referencesIndrakanti, S.S., Nesterenko, V.F., Maple, M.B., Hot isostatic pressing of bulk magnesium diboride: mechanical and superconducting properties (2001) Philos Mag Lett, 81, pp. 849-857
dc.relation.referencesAtkinson, H.V., Davies, S., Fundamental aspects of hot isostatic pressing: an overview (2000) Metall Mater Trans A Phys Metall Mater Sci, 31, pp. 2981-3000
dc.relation.referencesGalindez, Y., Correa, E., Zuleta, A.A., Improved Mg–Al–Zn magnesium alloys produced by high energy milling and hot sintering (2019) Met Mater Int
dc.relation.referencesAvar, B., Ozcan, S., Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments (2014) Ceram Int, 40, pp. 11123-11130
dc.relation.referencesGhasemi, A., Penther, D., Kamrani, S., Microstructure and nanoindentation analysis of Mg-SiC nanocomposite powders synthesized by mechanical milling (2018) Mater Charact, 142, pp. 137-143
dc.relation.referencesHosseini-Gourajoubi, F., Pourabdoli, M., Uner, D., Raygan, S., Effect of process control agents on synthesizing nano-structured 2Mg–9Ni–Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2 (2015) Adv Powder Technol, 26, pp. 448-453
dc.relation.referencesSakher, E., Loudjani, N., Benchiheub, M., Bououdina, M., Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using Rietveld analysis (2018) J Nanomater, 2018, pp. 1-11
dc.relation.referencesKurama, H., Erkuş, Ş., Gaşan, H., The effect of process control agent usage on the structural properties of MgB2 synthesized by high energy ball mill (2017) Ceram Int, 43, pp. S391-S396
dc.relation.referencesZhou, H., Hu, L., Sun, H., Chen, X., Synthesis of nanocrystalline Mg-based Mg-Ti composite powders by mechanical milling (2015) Mater Charact, 106, pp. 44-51
dc.relation.referencesYazdani, A., Hadianfard, M.J., Salahinejad, E., A system dynamics model to estimate energy, temperature, and particle size in planetary ball milling (2013) J Alloys Compd, 555, pp. 108-111
dc.relation.referencesMagini, M., Iasonna, A., Padella, F., Ball milling: an experimental support to the energy transfer evaluated by the collision model (1996) Scr Mater, 34, pp. 13-19
dc.relation.referencesSivakumar, M., Dasgupta, A., Ghosh, C., Optimisation of high energy ball milling parameters to synthesize oxide dispersion strengthened alloy 617 powder and its characterization (2019) Adv Powder Technol, 30, pp. 2320-2329
dc.relation.referencesMagini, M., Iasonna, A., Energy transfer in mechanical alloying (overview) (1995) Mater Trans JIM, 36, pp. 123-133
dc.relation.referencesZou, C., Long, Y., Zheng, X., Effect of ball sizes on synthesis of OsB2 powders by mechanical alloying (2017) Ceram Int, 43, pp. 17111-17115
dc.relation.referencesHong, S.-M., Park, J.-J., Park, E.-K., Fabrication of titanium carbide nano-powders by a very high speed planetary ball milling with a help of process control agents (2015) Powder Technol, 274, pp. 393-401
dc.relation.referencesRios, J., Restrepo, A., Zuleta, A., (2021) Effect of ball size on the microstructure and morphology of Mg powders processed by high-energy ball milling. 1–10, , (,),., https://doi.org/10.3390/met11101621
dc.relation.referencesFahimpour, V., Sadrnezhaad, S.K., Breakage mechanism of Mg during ball milling with NaCl, KCl and urea for nanopowder production (2017) Trans Indian Inst Met, 70, pp. 1783-1793
dc.relation.referencesÇakmak, G., Öztürk, T., Milling of magnesium powders without additives (2013) Powder Technol, 237, pp. 484-488
dc.relation.referencesLiu, Y., Li, K., Luo, T., Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications (2015) Mater Sci Eng C, 56, pp. 241-250
dc.relation.referencesPark, K., Park, J., Kwon, H., Effect of intermetallic compound on the Al-Mg composite materials fabricated by mechanical ball milling and spark plasma sintering (2018) J Alloys Compd, 739, pp. 311-318
dc.relation.referencesZhang, D.L., Processing of advanced materials using high-energy mechanical milling (2004) Prog Mater Sci, 49, pp. 537-560
dc.relation.referencesShashanka, R., Chaira, D., Optimization of milling parameters for the synthesis of nano-structured duplex and ferritic stainless steel powders by high energy planetary milling (2015) Powder Technol, 278, pp. 35-45
dc.relation.referencesWu, Z.M., Liang, Y.X., Fan, Y., The ball to powder ratio (BPR) dependent morphology and microstructure of tungsten powder refined by ball milling (2018) Powder Technol, 339, pp. 256-263
dc.relation.referencesMaweja, K., Phasha, M., van der Berg, N., Microstructure and crystal structure of an equimolar Mg-Ti alloy processed by Simoloyer high-energy ball mill (2010) Powder Technol, 199, pp. 256-263
dc.relation.referencesWang, H.W., Der, C.S., Wang, S.H., Hydrogen absorption properties of Mg2Ni alloy with excess Mg synthesized by wet milling in toluene without annealing (2010) J Alloys Compd, 491, pp. 623-626
dc.relation.referencesWang, H.W., Der, C.S., Wang, S.H., Amorphous phase formation in intermetallic Mg2Ni alloy synthesized by ethanol wet milling (2009) J Alloys Compd, 479, pp. 330-333
dc.relation.referencesAsano, K., Enoki, H., Akiba, E., Synthesis of HCP, FCC and BCC structure alloys in the Mg-Ti binary system by means of ball milling (2009) J Alloys Compd, 480, pp. 558-563
dc.relation.referencesChen, H., Xiao, H., Wang, Y., Insight into the energy conversion and structural evolution of magnesium hydride during high-energy ball milling for its controllable synthesis (2020) J Alloys Compd, 836
dc.relation.referencesAlaneme, K.K., Okotete, E.A., Enhancing plastic deformability of Mg and its alloys—a review of traditional and nascent developments (2017) J Magnes Alloy, 5, pp. 460-475
dc.relation.referencesKim, K.R., Ahn, J.W., Kim, G.H., Corrosion behavior of magnesium powder fabricated by high-energy ball milling and spark plasma sintering (2014) Met Mater Int, 20, pp. 1095-1101
dc.relation.referencesFecht, H.J., Hellstern, E., Fu, Z., Johnson, W.L., Nanocrystalline metals prepared by high-energy ball milling (1990) Metall Trans A, 21, pp. 2333-2337
dc.relation.referencesRuiz-Navas, E.M., Edil da Costa, C., Velasco López, F., Torralba Castelló, J.M., Aleación mecánica: Método de obtención de polvos metálicos y de materiales compuestos (2000) Rev Metal, 36, pp. 279-286
dc.relation.referencesCao, P., Lu, L., Lai, M.O., Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying (2001) Mater Res Bull, 36, pp. 981-988
dc.relation.referencesRousselot, S., Bichat, M.P., Guay, D., Roué, L., Structure and electrochemical behaviour of metastable Mg50Ti50 alloy prepared by ball milling (2008) J Power Sources, 175, pp. 621-624
dc.relation.referencesPonhan, K., Tassenberg, K., Weston, D., Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg-SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling (2020) Ceram Int, 46, pp. 26956-26969
dc.relation.referencesSuryanarayana, C., Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials (2019) Research, 2019, pp. 1-17. , (,),.,:., https://doi.org/10.34133/2019/4219812
dc.relation.referencesHwang, S., Nishimura, C., McCormick, P., Mechanical milling of magnesium powder (2001) Mater Sci Eng A, 318, pp. 22-33
dc.relation.referencesSeth, P.P., Singh, N., Singh, M., Formation of fine Mg2Si phase in Mg–Si alloy via solid-state sintering using high energy ball milling (2020) J Alloys Compd, 821
dc.relation.referencesKumar, A., Pandey, P.M., Development of Mg based biomaterial with improved mechanical and degradation properties using powder metallurgy (2020) J Magnes Alloy, 8, pp. 883-898
dc.relation.referencesGerman, R.M., Thermodynamics of sintering (2010) Sintering of advanced materials, pp. 3-32. , (,),. In:,., Elsevier
dc.relation.referencesCheng, Y., Cui, Z., Cheng, L., Effect of particle size on densification of pure magnesium during spark plasma sintering (2017) Adv Powder Technol, 28, pp. 1129-1135
dc.relation.referencesBurke, P., Kipouros, G.J., Fancelli, D., Laverdiere, V., Sintering fundamentals of magnesium powders (2009) Can Metall Q, 48, pp. 123-132
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem