Mostrar el registro sencillo del ítem

dc.contributor.authorBertel R
dc.contributor.authorMora-Ramos M.E
dc.contributor.authorCorrea J.D.
dc.date.accessioned2022-09-14T14:33:43Z
dc.date.available2022-09-14T14:33:43Z
dc.date.created2022
dc.identifier.issn3010104
dc.identifier.urihttp://hdl.handle.net/11407/7446
dc.descriptionDensity-functional theory calculations are performed to investigate the adsorption of molecular hydrogen onto MoS2 monolayers, armchair nanoribbons, and stacked monolayer-armchair nanoribbon complexes. The van der Waals interaction is explicitly included through the use of three distinct exchange-correlation functionals and a comparison with the use of LDA is made. The adsorption energy, structural properties, band structure are discussed, considering different adsorption sites, nanoribbon dimensions, and H2 concentrations. Recovery time is evaluated for a particular situation where significant adsorption energy is obtained for the monolayer plus nanoribbon complex, -together with a reasonable modification of the electronic structure, in comparison with MoS2 monolayer and free-standing nanoribbons-, pointing at a promising use of this system as a molecular hydrogen sensor. © 2022eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85122680720&doi=10.1016%2fj.chemphys.2022.111446&partnerID=40&md5=31904dca99ebd71e95e6deb2cad135bf
dc.sourceChemical Physics
dc.titleEffects of van der Waals interaction on the adsorption of H2 on MoS2 monolayers and nanoribbons
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.chemphys.2022.111446
dc.subject.keywordDFTeng
dc.subject.keywordH2eng
dc.subject.keywordMoS2eng
dc.subject.keywordOpticaleng
dc.relation.citationvolume555
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationBertel, R., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigaciones, Universidad de la Guajira, Riohacha, Colombia
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209 Cuernavaca, Morelos, Mexico
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesBhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., Xiao, D., Cooper, V.R., Recent advances in two-dimensional materials beyond graphene (2015) ACS Nano, 9 (12), pp. 11509-11539
dc.relation.referencesByskov, L.S., Nørskov, J.K., Clausen, B.S., Topsøe, H., DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts (1999) J. Catal., 187 (1), pp. 109-122
dc.relation.referencesFrame, F.A., Osterloh, F.E., CdSe-MoS2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light (2010) J. Phys. Chem. C, 114 (23), pp. 10628-10633
dc.relation.referencesVoevodin, A., Zabinski, J., Laser surface texturing for adaptive solid lubrication (2006) Wear, 261 (11-12), pp. 1285-1292
dc.relation.referencesHamilton, M.A., Alvarez, L.A., Mauntler, N.A., Argibay, N., Colbert, R., Burris, D.L., Muratore, C., Sawyer, W.G., A possible link between macroscopic wear and temperature dependent friction behaviors of MoS2 coatings (2008) Tribol. Lett., 32 (2), pp. 91-98
dc.relation.referencesFontana, M., Deppe, T., Boyd, A.K., Rinzan, M., Liu, A.Y., Paranjape, M., Barbara, P., Electron-hole transport and photovoltaic effect in gated MoS2 schottky junctions (2013) Sci. Rep., 3, p. 1634
dc.relation.referencesDominko, R., Arčon, D., Mrzel, A., Zorko, A., Cevc, P., Venturini, P., Gaberscek, M., Mihailovic, D., Dichalcogenide nanotube electrodes for Li-ion batteries (2002) Adv. Mater., 14 (21), pp. 1531-1534
dc.relation.referencesKang, M.-A., Kim, S.J., Song, W., Chang, S.-J., Park, C.-Y., Myung, S., Lim, J., An, K.-S., Fabrication of flexible optoelectronic devices based on mos2/graphene hybrid patterns by a soft lithographic patterning method (2017) Carbon, 116, pp. 167-173
dc.relation.referencesWang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides (2012) Nat. Nanotechnol., 7 (11), pp. 699-712
dc.relation.referencesLi, H., Yin, Z., He, Q., Li, H., Huang, X., Lu, G., Fam, D.W.H., Zhang, H., Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing no at room temperature (2012) Small, 8 (1), pp. 63-67
dc.relation.referencesLiu, Y., Hao, L., Gao, W., Wu, Z., Lin, Y., Li, G., Guo, W., Zhu, J., Hydrogen gas sensing properties of mos2/si heterojunction (2015) Sens. Actuators B: Chem., 211, pp. 537-543
dc.relation.referencesLin, S., Li, X., Wang, P., Xu, Z., Zhang, S., Zhong, H., Wu, Z., Chen, H., Interface designed mos 2/gaas heterostructure solar cell with sandwich stacked hexagonal boron nitride (2015) Sci. Rep., 5, p. 15103
dc.relation.referencesAgrawal, A., Kumar, R., Venkatesan, S., Zakhidov, A., Zhu, Z., Bao, J., Kumar, M., Kumar, M., Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-d network of mos2 flakes at room temperature (2017) Appl. Phys. Lett., 111 (9), p. 093102
dc.relation.referencesBaek, D.-H., Kim, J., Mos2 gas sensor functionalized by pd for the detection of hydrogen (2017) Sens. Actuators B: Chem., 250, pp. 686-691
dc.relation.referencesAkbari, E., Jahanbin, K., Afroozeh, A., Yupapin, P., Buntat, Z., Brief review of monolayer molybdenum disulfide application in gas sensor (2018) Physica B, 545, pp. 510-518
dc.relation.referencesKrishnan, U., Kaur, M., Singh, K., Kumar, M., Kumar, A., A synoptic review of mos2: Synthesis to applications (2019) Superlattices Microstruct., 128, pp. 274-297
dc.relation.referencesAgrawal, A.V., Kumar, R., Yang, G., Bao, J., Kumar, M., Kumar, M., Enhanced adsorption sites in monolayer mos2 pyramid structures for highly sensitive and fast hydrogen sensor (2020) Int. J. Hydrogen Energy, 45 (15), pp. 9268-9277
dc.relation.referencesLee, S., Kang, Y., Lee, J., Kim, J., Shin, J.W., Sim, S., Go, D., Kim, J., Atomic layer deposited pt nanoparticles on functionalized mos2 as highly sensitive h2 sensor (2022) Appl. Surf. Sci., 571, p. 151256
dc.relation.referencesSchedin, F., Geim, A.K., Morozov, S.V., Hill, E., Blake, P., Katsnelson, M., Novoselov, K.S., Detection of individual gas molecules adsorbed on graphene (2007) Nat. Mater., 6 (9), pp. 652-655
dc.relation.referencesZhao, S., Xue, J., Kang, W., Gas adsorption on mos2 monolayer from first-principles calculations (2014) Chem. Phys. Lett., 595, pp. 35-42
dc.relation.referencesHuang, J., Chu, J., Wang, Z., Zhang, J., Yang, A., Li, X., Gao, C., Cheng, Y., Chemisorption of no2 to mos2 nanostructures and its effects for mos2 sensors (2019) ChemNanoMat, 5 (9), pp. 1123-1130
dc.relation.referencesSzary, M.J., Adsorption of ethylene oxide on doped monolayers of MoS2: A DFT study (2021) Mater. Sci. Eng. B, 265, p. 115009
dc.relation.referencesXu, S., Zhang, Y., Xu, F., Chen, C., Shen, Z., Theoretical study of the adsorption behaviors of gas molecules on the au-functionalized MoS2 nanosheets: A search for highly efficient gas sensors (2020) Comput. Theoret. Chem., 1188, p. 112935
dc.relation.referencesWang, X., Xiao, H., Wang, R., Liang, S., Yang, C., Effect of s vacancy or non-metallic atom (c, n and f) doping on the adsorption behaviors of molecules (h2s, bf4) on monolayer MoS2 (2020) Physica E, 124, p. 114292
dc.relation.referencesXiao, Z., Wu, W., Wu, X., Zhang, Y., Adsorption of no2 on monolayer mos2 doped with fe, co, and ni, cu: A computational investigation (2020) Chem. Phys. Lett., 755, p. 137768
dc.relation.referencesZhao, B., Shang, C., Zhou, B., Zhang, R., Wang, J., Chen, Z., Jiang, M., Adsorption and dissociation of h2o molecule on the doped monolayer mos2 with b/si (2019) Appl. Surf. Sci., 481, pp. 994-1000
dc.relation.referencesVikraman, D., Akbar, K., Hussain, S., Yoo, G., Jang, J.-Y., Chun, S.-H., Jung, J., Park, H.J., Direct synthesis of thickness-tunable mos2 quantum dot thin layers: Optical, structural and electrical properties and their application to hydrogen evolution (2017) Nano Energy, 35, pp. 101-114
dc.relation.referencesLi, Q., Walter, E., Van der Veer, W., Murray, B., Newberg, J., Bohannan, E., Switzer, J., Penner, R., Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis (2005) J. Phys. Chem. B, 109 (8), pp. 3169-3182
dc.relation.referencesKou, L., Tang, C., Zhang, Y., Heine, T., Chen, C., Frauenheim, T., Tuning magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 nanoribbons (2012) J. Phys. Chem. Lett., 3 (20), pp. 2934-2941
dc.relation.referencesDolui, K., Pemmaraju, C.D., Sanvito, S., Electric field effects on armchair MoS2 nanoribbons (2012) ACS Nano, 6 (6), pp. 4823-4834
dc.relation.referencesXu, H., Ding, Z., Nai, C.T., Bao, Y., Cheng, F., Tan, S.J., Loh, K.P., Controllable Synthesis of 2D and 1D MoS2 Nanostructures on Au Surface (2017) Adv. Funct. Mater., 27 (19), p. 1603887
dc.relation.referencesWu, D., Shi, J., Zheng, X., Liu, J., Dou, W., Gao, Y., Yuan, X., Huang, H., Cvd grown mos2 nanoribbons on mos2 covered sapphire (0001) without catalysts (2019) Phys. Status Solidi (RRL)–Rapid Res. Lett., 13 (7), p. 1900063
dc.relation.referencesBotello-Méndez, A.R., Lopez-Urias, F., Terrones, M., Terrones, H., Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons (2009) Nanotechnology, 20 (32), p. 325703
dc.relation.referencesLi, W., Guo, M., Zhang, G., Zhang, Y.-W., Edge-specific au/ag functionalization-induced conductive paths in armchair mos2 nanoribbons (2014) Chem. Mater., 26 (19), pp. 5625-5631
dc.relation.referencesAbbasi, T., Abbasi, S., ‘renewable'hydrogen: prospects and challenges (2011) Renew. Sustain. Energy Rev., 15 (6), pp. 3034-3040
dc.relation.referencesOuyang, F., Yang, Z., Ni, X., Wu, N., Chen, Y., Xiong, X., Hydrogenation-induced edge magnetization in armchair MoS2 nanoribbon and electric field effects (2014) Appl. Phys. Lett., 104 (7), p. 071901
dc.relation.referencesXiao, J., Long, M., Li, M., Li, X., Xu, H., Chan, K., Carrier mobility of mos 2 nanoribbons with edge chemical modification (2015) PCCP, 17 (10), pp. 6865-6873
dc.relation.referencesWang, R., Sun, H., Ma, B., Hu, J., Pan, J., Edge passivation induced single-edge ferromagnetism of zigzag mos2 nanoribbons (2017) Phys. Lett. A, 381 (4), pp. 301-306
dc.relation.referencesDavelou, D., Kopidakis, G., Kaxiras, E., Remediakis, I.N., Nanoribbon edges of transition-metal dichalcogenides: Stability and electronic properties (2017) Phys. Rev. B, 96 (16), p. 165436
dc.relation.referencesWang, X., Shi, J., Strain effects on the interaction between no2 and the mo-edge of the mos2 zigzag nanoribbon (2017) IEEE Trans. Nanotechnol., 16 (6), pp. 982-990
dc.relation.referencesZhao, X., Zhang, H., Zhao, B., Gao, Y., Wang, H., Wang, T., Wei, S., Yang, L., Engineering the band gap of armchair mose2 nanoribbon with edge passivation (2018) Superlattices Microstruct., 124, pp. 62-71
dc.relation.referencesDavoodianIdalik, M., Kordbacheh, A., Velashjerdi, F., Structural, electronic and transport properties of an edge terminated armchair mos2 nanoribbon with n, o and f atoms (2019) AIP Adv., 9 (3), p. 035144
dc.relation.referencesCha, J., Min, K.-A., Sung, D., Hong, S., Ab initio study of adsorption behaviors of molecular adsorbates on the surface and at the edge of mos2 (2018) Curr. Appl. Phys., 18 (9), pp. 1013-1019
dc.relation.referencesZhao, D., Wang, T., Heineman, W.R., Advances in h2 sensors for bioanalytical applications (2016) TrAC Trends Analyt. Chem., 79, pp. 269-275
dc.relation.referencesNazir, H., Muthuswamy, N., Louis, C., Jose, S., Prakash, J., Buan, M.E., Flox, C., Kauranen, P., Is the h2 economy realizable in the foreseeable future? Part iii: H2 usage technologies, applications, and challenges and opportunities (2020) Int, J. Hydrogen Energy., 45, pp. 28217-28239
dc.relation.referencesSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745
dc.relation.referencesBerland, K., Hyldgaard, P., Exchange functional that tests the robustness of the plasmon description of the van der waals density functional (2014) Phys. Rev. B, 89 (3), p. 035412
dc.relation.referencesRomán-Pérez, G., Soler, J.M., Efficient implementation of a van der waals density functional: application to double-wall carbon nanotubes (2009) Phys. Rev. Lett., 103 (9), p. 096102
dc.relation.referencesKlimeš, J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der waals density functional (2009) J. Phys.: Condens. Matter, 22 (2), p. 022201
dc.relation.referencesGupta, T.K., Preparation and characterization of layered superconductors (1991) Phys. Rev. B, 43 (7), p. 5276
dc.relation.referencesMak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F., Atomically thin MoS2: a new direct-gap semiconductor (2010) Phys. Rev. Lett., 105 (13), p. 136805
dc.relation.referencesYue, Q., Shao, Z., Chang, S., Li, J., Adsorption of gas molecules on monolayer mos 2 and effect of applied electric field (2013) Nanoscale Res. Lett., 8 (1), pp. 1-7
dc.relation.referencesLi, Y., Zhou, Z., Zhang, S., Chen, Z., MoS2 nanoribbons: high stability and unusual electronic and magnetic properties (2008) J. Am. Chem. Soc., 130 (49), pp. 16739-16744
dc.relation.referencesSingla, M., Jaggi, N., Enhanced hydrogen sensing properties in copper decorated nitrogen doped defective graphene nanoribbons: Dft study (2021) Physica E, 131, p. 114756
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem