dc.contributor.author | Bertel R | |
dc.contributor.author | Mora-Ramos M.E | |
dc.contributor.author | Correa J.D. | |
dc.date.accessioned | 2022-09-14T14:33:43Z | |
dc.date.available | 2022-09-14T14:33:43Z | |
dc.date.created | 2022 | |
dc.identifier.issn | 3010104 | |
dc.identifier.uri | http://hdl.handle.net/11407/7446 | |
dc.description | Density-functional theory calculations are performed to investigate the adsorption of molecular hydrogen onto MoS2 monolayers, armchair nanoribbons, and stacked monolayer-armchair nanoribbon complexes. The van der Waals interaction is explicitly included through the use of three distinct exchange-correlation functionals and a comparison with the use of LDA is made. The adsorption energy, structural properties, band structure are discussed, considering different adsorption sites, nanoribbon dimensions, and H2 concentrations. Recovery time is evaluated for a particular situation where significant adsorption energy is obtained for the monolayer plus nanoribbon complex, -together with a reasonable modification of the electronic structure, in comparison with MoS2 monolayer and free-standing nanoribbons-, pointing at a promising use of this system as a molecular hydrogen sensor. © 2022 | eng |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122680720&doi=10.1016%2fj.chemphys.2022.111446&partnerID=40&md5=31904dca99ebd71e95e6deb2cad135bf | |
dc.source | Chemical Physics | |
dc.title | Effects of van der Waals interaction on the adsorption of H2 on MoS2 monolayers and nanoribbons | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1016/j.chemphys.2022.111446 | |
dc.subject.keyword | DFT | eng |
dc.subject.keyword | H2 | eng |
dc.subject.keyword | MoS2 | eng |
dc.subject.keyword | Optical | eng |
dc.relation.citationvolume | 555 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Bertel, R., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigaciones, Universidad de la Guajira, Riohacha, Colombia | |
dc.affiliation | Mora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209 Cuernavaca, Morelos, Mexico | |
dc.affiliation | Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.relation.references | Bhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., Xiao, D., Cooper, V.R., Recent advances in two-dimensional materials beyond graphene (2015) ACS Nano, 9 (12), pp. 11509-11539 | |
dc.relation.references | Byskov, L.S., Nørskov, J.K., Clausen, B.S., Topsøe, H., DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts (1999) J. Catal., 187 (1), pp. 109-122 | |
dc.relation.references | Frame, F.A., Osterloh, F.E., CdSe-MoS2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light (2010) J. Phys. Chem. C, 114 (23), pp. 10628-10633 | |
dc.relation.references | Voevodin, A., Zabinski, J., Laser surface texturing for adaptive solid lubrication (2006) Wear, 261 (11-12), pp. 1285-1292 | |
dc.relation.references | Hamilton, M.A., Alvarez, L.A., Mauntler, N.A., Argibay, N., Colbert, R., Burris, D.L., Muratore, C., Sawyer, W.G., A possible link between macroscopic wear and temperature dependent friction behaviors of MoS2 coatings (2008) Tribol. Lett., 32 (2), pp. 91-98 | |
dc.relation.references | Fontana, M., Deppe, T., Boyd, A.K., Rinzan, M., Liu, A.Y., Paranjape, M., Barbara, P., Electron-hole transport and photovoltaic effect in gated MoS2 schottky junctions (2013) Sci. Rep., 3, p. 1634 | |
dc.relation.references | Dominko, R., Arčon, D., Mrzel, A., Zorko, A., Cevc, P., Venturini, P., Gaberscek, M., Mihailovic, D., Dichalcogenide nanotube electrodes for Li-ion batteries (2002) Adv. Mater., 14 (21), pp. 1531-1534 | |
dc.relation.references | Kang, M.-A., Kim, S.J., Song, W., Chang, S.-J., Park, C.-Y., Myung, S., Lim, J., An, K.-S., Fabrication of flexible optoelectronic devices based on mos2/graphene hybrid patterns by a soft lithographic patterning method (2017) Carbon, 116, pp. 167-173 | |
dc.relation.references | Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides (2012) Nat. Nanotechnol., 7 (11), pp. 699-712 | |
dc.relation.references | Li, H., Yin, Z., He, Q., Li, H., Huang, X., Lu, G., Fam, D.W.H., Zhang, H., Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing no at room temperature (2012) Small, 8 (1), pp. 63-67 | |
dc.relation.references | Liu, Y., Hao, L., Gao, W., Wu, Z., Lin, Y., Li, G., Guo, W., Zhu, J., Hydrogen gas sensing properties of mos2/si heterojunction (2015) Sens. Actuators B: Chem., 211, pp. 537-543 | |
dc.relation.references | Lin, S., Li, X., Wang, P., Xu, Z., Zhang, S., Zhong, H., Wu, Z., Chen, H., Interface designed mos 2/gaas heterostructure solar cell with sandwich stacked hexagonal boron nitride (2015) Sci. Rep., 5, p. 15103 | |
dc.relation.references | Agrawal, A., Kumar, R., Venkatesan, S., Zakhidov, A., Zhu, Z., Bao, J., Kumar, M., Kumar, M., Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-d network of mos2 flakes at room temperature (2017) Appl. Phys. Lett., 111 (9), p. 093102 | |
dc.relation.references | Baek, D.-H., Kim, J., Mos2 gas sensor functionalized by pd for the detection of hydrogen (2017) Sens. Actuators B: Chem., 250, pp. 686-691 | |
dc.relation.references | Akbari, E., Jahanbin, K., Afroozeh, A., Yupapin, P., Buntat, Z., Brief review of monolayer molybdenum disulfide application in gas sensor (2018) Physica B, 545, pp. 510-518 | |
dc.relation.references | Krishnan, U., Kaur, M., Singh, K., Kumar, M., Kumar, A., A synoptic review of mos2: Synthesis to applications (2019) Superlattices Microstruct., 128, pp. 274-297 | |
dc.relation.references | Agrawal, A.V., Kumar, R., Yang, G., Bao, J., Kumar, M., Kumar, M., Enhanced adsorption sites in monolayer mos2 pyramid structures for highly sensitive and fast hydrogen sensor (2020) Int. J. Hydrogen Energy, 45 (15), pp. 9268-9277 | |
dc.relation.references | Lee, S., Kang, Y., Lee, J., Kim, J., Shin, J.W., Sim, S., Go, D., Kim, J., Atomic layer deposited pt nanoparticles on functionalized mos2 as highly sensitive h2 sensor (2022) Appl. Surf. Sci., 571, p. 151256 | |
dc.relation.references | Schedin, F., Geim, A.K., Morozov, S.V., Hill, E., Blake, P., Katsnelson, M., Novoselov, K.S., Detection of individual gas molecules adsorbed on graphene (2007) Nat. Mater., 6 (9), pp. 652-655 | |
dc.relation.references | Zhao, S., Xue, J., Kang, W., Gas adsorption on mos2 monolayer from first-principles calculations (2014) Chem. Phys. Lett., 595, pp. 35-42 | |
dc.relation.references | Huang, J., Chu, J., Wang, Z., Zhang, J., Yang, A., Li, X., Gao, C., Cheng, Y., Chemisorption of no2 to mos2 nanostructures and its effects for mos2 sensors (2019) ChemNanoMat, 5 (9), pp. 1123-1130 | |
dc.relation.references | Szary, M.J., Adsorption of ethylene oxide on doped monolayers of MoS2: A DFT study (2021) Mater. Sci. Eng. B, 265, p. 115009 | |
dc.relation.references | Xu, S., Zhang, Y., Xu, F., Chen, C., Shen, Z., Theoretical study of the adsorption behaviors of gas molecules on the au-functionalized MoS2 nanosheets: A search for highly efficient gas sensors (2020) Comput. Theoret. Chem., 1188, p. 112935 | |
dc.relation.references | Wang, X., Xiao, H., Wang, R., Liang, S., Yang, C., Effect of s vacancy or non-metallic atom (c, n and f) doping on the adsorption behaviors of molecules (h2s, bf4) on monolayer MoS2 (2020) Physica E, 124, p. 114292 | |
dc.relation.references | Xiao, Z., Wu, W., Wu, X., Zhang, Y., Adsorption of no2 on monolayer mos2 doped with fe, co, and ni, cu: A computational investigation (2020) Chem. Phys. Lett., 755, p. 137768 | |
dc.relation.references | Zhao, B., Shang, C., Zhou, B., Zhang, R., Wang, J., Chen, Z., Jiang, M., Adsorption and dissociation of h2o molecule on the doped monolayer mos2 with b/si (2019) Appl. Surf. Sci., 481, pp. 994-1000 | |
dc.relation.references | Vikraman, D., Akbar, K., Hussain, S., Yoo, G., Jang, J.-Y., Chun, S.-H., Jung, J., Park, H.J., Direct synthesis of thickness-tunable mos2 quantum dot thin layers: Optical, structural and electrical properties and their application to hydrogen evolution (2017) Nano Energy, 35, pp. 101-114 | |
dc.relation.references | Li, Q., Walter, E., Van der Veer, W., Murray, B., Newberg, J., Bohannan, E., Switzer, J., Penner, R., Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis (2005) J. Phys. Chem. B, 109 (8), pp. 3169-3182 | |
dc.relation.references | Kou, L., Tang, C., Zhang, Y., Heine, T., Chen, C., Frauenheim, T., Tuning magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 nanoribbons (2012) J. Phys. Chem. Lett., 3 (20), pp. 2934-2941 | |
dc.relation.references | Dolui, K., Pemmaraju, C.D., Sanvito, S., Electric field effects on armchair MoS2 nanoribbons (2012) ACS Nano, 6 (6), pp. 4823-4834 | |
dc.relation.references | Xu, H., Ding, Z., Nai, C.T., Bao, Y., Cheng, F., Tan, S.J., Loh, K.P., Controllable Synthesis of 2D and 1D MoS2 Nanostructures on Au Surface (2017) Adv. Funct. Mater., 27 (19), p. 1603887 | |
dc.relation.references | Wu, D., Shi, J., Zheng, X., Liu, J., Dou, W., Gao, Y., Yuan, X., Huang, H., Cvd grown mos2 nanoribbons on mos2 covered sapphire (0001) without catalysts (2019) Phys. Status Solidi (RRL)–Rapid Res. Lett., 13 (7), p. 1900063 | |
dc.relation.references | Botello-Méndez, A.R., Lopez-Urias, F., Terrones, M., Terrones, H., Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons (2009) Nanotechnology, 20 (32), p. 325703 | |
dc.relation.references | Li, W., Guo, M., Zhang, G., Zhang, Y.-W., Edge-specific au/ag functionalization-induced conductive paths in armchair mos2 nanoribbons (2014) Chem. Mater., 26 (19), pp. 5625-5631 | |
dc.relation.references | Abbasi, T., Abbasi, S., ‘renewable'hydrogen: prospects and challenges (2011) Renew. Sustain. Energy Rev., 15 (6), pp. 3034-3040 | |
dc.relation.references | Ouyang, F., Yang, Z., Ni, X., Wu, N., Chen, Y., Xiong, X., Hydrogenation-induced edge magnetization in armchair MoS2 nanoribbon and electric field effects (2014) Appl. Phys. Lett., 104 (7), p. 071901 | |
dc.relation.references | Xiao, J., Long, M., Li, M., Li, X., Xu, H., Chan, K., Carrier mobility of mos 2 nanoribbons with edge chemical modification (2015) PCCP, 17 (10), pp. 6865-6873 | |
dc.relation.references | Wang, R., Sun, H., Ma, B., Hu, J., Pan, J., Edge passivation induced single-edge ferromagnetism of zigzag mos2 nanoribbons (2017) Phys. Lett. A, 381 (4), pp. 301-306 | |
dc.relation.references | Davelou, D., Kopidakis, G., Kaxiras, E., Remediakis, I.N., Nanoribbon edges of transition-metal dichalcogenides: Stability and electronic properties (2017) Phys. Rev. B, 96 (16), p. 165436 | |
dc.relation.references | Wang, X., Shi, J., Strain effects on the interaction between no2 and the mo-edge of the mos2 zigzag nanoribbon (2017) IEEE Trans. Nanotechnol., 16 (6), pp. 982-990 | |
dc.relation.references | Zhao, X., Zhang, H., Zhao, B., Gao, Y., Wang, H., Wang, T., Wei, S., Yang, L., Engineering the band gap of armchair mose2 nanoribbon with edge passivation (2018) Superlattices Microstruct., 124, pp. 62-71 | |
dc.relation.references | DavoodianIdalik, M., Kordbacheh, A., Velashjerdi, F., Structural, electronic and transport properties of an edge terminated armchair mos2 nanoribbon with n, o and f atoms (2019) AIP Adv., 9 (3), p. 035144 | |
dc.relation.references | Cha, J., Min, K.-A., Sung, D., Hong, S., Ab initio study of adsorption behaviors of molecular adsorbates on the surface and at the edge of mos2 (2018) Curr. Appl. Phys., 18 (9), pp. 1013-1019 | |
dc.relation.references | Zhao, D., Wang, T., Heineman, W.R., Advances in h2 sensors for bioanalytical applications (2016) TrAC Trends Analyt. Chem., 79, pp. 269-275 | |
dc.relation.references | Nazir, H., Muthuswamy, N., Louis, C., Jose, S., Prakash, J., Buan, M.E., Flox, C., Kauranen, P., Is the h2 economy realizable in the foreseeable future? Part iii: H2 usage technologies, applications, and challenges and opportunities (2020) Int, J. Hydrogen Energy., 45, pp. 28217-28239 | |
dc.relation.references | Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745 | |
dc.relation.references | Berland, K., Hyldgaard, P., Exchange functional that tests the robustness of the plasmon description of the van der waals density functional (2014) Phys. Rev. B, 89 (3), p. 035412 | |
dc.relation.references | Román-Pérez, G., Soler, J.M., Efficient implementation of a van der waals density functional: application to double-wall carbon nanotubes (2009) Phys. Rev. Lett., 103 (9), p. 096102 | |
dc.relation.references | Klimeš, J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der waals density functional (2009) J. Phys.: Condens. Matter, 22 (2), p. 022201 | |
dc.relation.references | Gupta, T.K., Preparation and characterization of layered superconductors (1991) Phys. Rev. B, 43 (7), p. 5276 | |
dc.relation.references | Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F., Atomically thin MoS2: a new direct-gap semiconductor (2010) Phys. Rev. Lett., 105 (13), p. 136805 | |
dc.relation.references | Yue, Q., Shao, Z., Chang, S., Li, J., Adsorption of gas molecules on monolayer mos 2 and effect of applied electric field (2013) Nanoscale Res. Lett., 8 (1), pp. 1-7 | |
dc.relation.references | Li, Y., Zhou, Z., Zhang, S., Chen, Z., MoS2 nanoribbons: high stability and unusual electronic and magnetic properties (2008) J. Am. Chem. Soc., 130 (49), pp. 16739-16744 | |
dc.relation.references | Singla, M., Jaggi, N., Enhanced hydrogen sensing properties in copper decorated nitrogen doped defective graphene nanoribbons: Dft study (2021) Physica E, 131, p. 114756 | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |