Show simple item record

dc.contributor.authorSalazar-Santa J.D
dc.contributor.authorMora-Ramos M.E
dc.contributor.authorMarín J.H.
dc.date.accessioned2022-09-14T14:33:43Z
dc.date.available2022-09-14T14:33:43Z
dc.date.created2021
dc.identifier.issn14786435
dc.identifier.urihttp://hdl.handle.net/11407/7447
dc.descriptionNon-uniform height semiconductor quantum rings are studied in order to determine their electronic and optical absorption properties. Theoretical modelling of the structure includes an analytical description of the non-regular multi-hilled confining potential as well as the presence of repulsive scattering centre and external crossing electric and magnetic fields. We have discussed the features of localised and extended (rotational, Aharonov–Bohm-like) states in the presence of the magnetic field. A modification of the spectrum, with the appearance of a Stark-like behaviour, and its corresponding modification related to the repulsive potential is analysed when the electric field effect is considered. In double-hilled structures, these properties of the energy spectrum are of main importance in explaining the apparent optical transparency induced within a certain range of the electric field strength. The presence of the repulsive centre is found to cause a moderate redshift of the light absorption response. © 2020 Informa UK Limited, trading as Taylor & Francis Group.eng
dc.language.isoeng
dc.publisherTaylor and Francis Ltd.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098577474&doi=10.1080%2f14786435.2020.1861356&partnerID=40&md5=264b9305ac74889b4b3607c6126fa204
dc.sourcePhilosophical Magazine
dc.titleElectronic and optical properties of an electro-magnetic non-uniform narrow quantum ring under repulsive scattering centre
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1080/14786435.2020.1861356
dc.subject.keyword71.70.Ejeng
dc.subject.keyword73.21.2-beng
dc.subject.keyword75.75.1+aeng
dc.subject.keywordAharonov–Bohm oscillationseng
dc.subject.keywordLinear and non-linear propertieseng
dc.subject.keywordNon-uniform height quantum ringeng
dc.subject.keywordPseudopotentialeng
dc.subject.keywordQuantum ribboneng
dc.subject.keywordQuantum ringeng
dc.subject.keywordElectric field effectseng
dc.subject.keywordElectromagnetic wave scatteringeng
dc.subject.keywordLight absorptioneng
dc.subject.keywordMagnetic fieldseng
dc.subject.keywordNanoringseng
dc.subject.keywordQuantum confinementeng
dc.subject.keywordAnalytical descriptioneng
dc.subject.keywordElectric and magnetic fieldseng
dc.subject.keywordElectric field strengtheng
dc.subject.keywordElectronic and optical propertieseng
dc.subject.keywordOptical absorption propertieseng
dc.subject.keywordOptical transparencyeng
dc.subject.keywordRepulsive potentialseng
dc.subject.keywordTheoretical modellingeng
dc.subject.keywordOptical propertieseng
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationSalazar-Santa, J.D., Grupo Cerámicos y Vítreos, Escuela de Física, Universidad Nacional de Colombia, Medellín, Colombia
dc.affiliationMora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
dc.affiliationMarín, J.H., Grupo Cerámicos y Vítreos, Escuela de Física, Universidad Nacional de Colombia, Medellín, Colombia
dc.relation.referencesJacak, L., Hawrylak, P., Wojs, A., (1998) Quantum Dots, , Springer, Berlin
dc.relation.referencesBimberg, D., Grundmann, M., Ledentsov, N.N., (1999) Quantum Dot Heterostructures, , John Wiley & Sons, and, Berlin
dc.relation.referencesFomin, V.M., (2014) Physics of Quantum Rings, , Springer-Verlag, Heidelberg
dc.relation.referencesAierken, A., Hakkarainen, T., Riikonen, J., Sopanen, M., Inas island-to-ring transformation by a partial capping layer (2008) J. Cryst. Growth, 310, pp. 5077-5080
dc.relation.referencesLinares-García, G., Meza-Montes, L., Stinaff, E., Alsolamy, S.M., Ware, M.E., Mazur, Y.I., Wang, Z.M., Salamo, G.J., Optical properties of a quantum dot-ring system grown using droplet epitaxy (2016) Nanoscale Res. Lett., 11, p. 309. , p
dc.relation.referencesBoonpeng, P., Kiravittaya, S., Thainoi, S., Panyakeow, S., Ratanathammaphan, S., Ingaas quantum-dot-in-ring structure by droplet epitaxy (2013) J. Cryst. Growth, 378, pp. 435-438
dc.relation.referencesLorke, A., Luyken, R.J., Govorov, A.O., Kotthaus, J.P., Spectroscopy of nanoscopic semiconductor rings (2000) Phys. Rev. Lett., 84, p. 2223. , p
dc.relation.referencesLing, H.S., Wang, S.Y., Lee, C.P., Lo, M.C., Characteristics of In (Ga) As quantum ring infrared photodetectors (2009) J. Appl. Phys., 105, p. 034504. , p
dc.relation.referencesMazur, Y.I., Lopes-Oliveira, V., de Souza, L.D., Lopez-Richard, V., Teodoro, M.D., Dorogan, V.G., Benamara, M., Salamo, G.J., Carrier transfer in vertically stacked quantum ring-quantum dot chains (2015) J. Appl. Phys., 117, p. 154307. , p
dc.relation.referencesWen, Z.C., Wei, H.X., Han, X.F., Patterned nanoring magnetic tunnel junctions (2007) Appl. Phys. Lett., 91, p. 122511. , p
dc.relation.referencesde Sousa, G.O., da Costa, D.R., Chaves, A., Farias, G.A., Peeters, F.M., Unusual quantum confined Stark effect and Aharonov-Bohm oscillations in semiconductor quantum rings with anisotropic effective masses (2017) Phys. Rev. B, 95, p. 205414. , p
dc.relation.referencesVoskoboynikov, O., Recovery of the Aharonov-Bohm oscillations in asymmetrical quantum rings (2016) AIP Adv., 6, p. 075204. , p
dc.relation.referencesBejan, D., Donor impurity-related nonlinear optical rectification in a two-dimensional quantum ring under magnetic field (2017) Phys. Lett. A, 381, pp. 3307-3313
dc.relation.referencesLiang, S., Xie, W., Shen, H., Optical properties in a two-dimensional quantum ring: confinement potential and Aharonov–Bohm effect (2011) Opt. Commun., 284, pp. 5818-5828
dc.relation.referencesFulla, M.R., Marín, J.H., Gutiérrez, W., Mora-Ramos, M.E., Duque, C.A., Essential properties of a D2+ molecular complex confined in ring-like nanostructures under external probes: magnetic field and hydrostatic pressure (2014) Superlattices Microstruct., 67, pp. 207-220
dc.relation.referencesSuaza, Y.A., Fulla, M.R., Laroze, D., Baghramyan, H.M., Marin, J.H., Intense laser field effect on D2+ molecular complex localized in semiconductor quantum wells (2019) Chem. Phys. Lett., 730, pp. 384-390
dc.relation.referencesChak-Man, L., Jun-Qin, L., Wen-Ying, R., Chak-Hong, R., Energy spectra of a magnetic quantum ring with an off-center impurity (2006) Commun. Theor. Phys., 45, p. 737. , p
dc.relation.referencesMonozon, B.S., Schmelcher, P., Impurity center in a semiconductor quantum ring in the presence of crossed magnetic and electric fields (2003) Phys. Rev. B, 67, p. 045203. , p
dc.relation.referencesSherly, I.J., Nithiananthi, P., Effect of confining potential on the exciton stability at various locations in a parabolic and square quantum ring (2020) Phys. Scripta, 95, p. 055102. , p
dc.relation.referencesBejan, D., Stan, C., Aharonov-Bohm effect in pseudo-elliptic quantum rings: influence of geometry, eccentricity and electric field (2019) Eur. Phys. J. Plus, 134, pp. 1-14
dc.relation.referencesXie, W., Aharonov–Bohm oscillation of Raman scattering in a quantum ring (2014) Phys. B, 438, pp. 88-90
dc.relation.referencesGharaati, A., Khordad, R., Gharaati, A., A new confinement potential in spherical quantum dots: modified Gaussian potential (2010) Superlattices Microstruct., 48, pp. 276-287
dc.relation.referencesLiang, S., Xie, W., Shen, H., Optical properties in a two-dimensional quantum ring: confinement potential and Aharonov–Bohm effect (2011) Opt. Commun., 284, pp. 5818-5828
dc.relation.referencesLinares-García, G., Meza-Montes, L., Stinaff, E., Alsolamy, S.M., Ware, M.E., Mazur, Y.I., Wang, Z.M., Salamo, G.J., Optical properties of a quantum dot-ring system grown using droplet epitaxy (2016) Nanoscale Res. Lett., 11, p. 309. , p
dc.relation.referencesBoonpeng, P., Kiravittaya, S., Thainoi, S., Panyakeow, S., Ratanathammaphan, S., Ingaas quantum-dot-in-ring structure by droplet epitaxy (2013) J.Cryst. Growth, 378, pp. 435-438
dc.relation.referencesSuaza, Y.A., Fonnegra-García, D., Fulla, M.R., Salazar-Santa, J.D., Marín, J.H., Donor impurity states in a non-uniform quantum strip: geometrical and electro-magnetic field effects (2017) Superlattices Microstruct., 103, pp. 127-138
dc.relation.referencesSuaza, Y.A., Laroze, D., Fulla, M.R., Marín, J.H., D2+ molecular complex in non-uniform height quantum ribbon under crossed electric and magnetic fields (2018) Chem. Phys. Lett., 699, pp. 267-274
dc.relation.referencesAhn, D., Chuang, S.L., Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field (1987) IEEE J. Quant. Electron., 23, pp. 2196-2204
dc.relation.referencesMrabti, T., Labdouti, Z., Mouadili, A., El Boudouti, E.H., Djafari-Rouhani, B., Aharonov-Bohm-effect induced transparency and reflection in mesoscopic rings side coupled to a quantum wire (2020) Phys. E, 116, p. 113770. , p
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record