Mostrar el registro sencillo del ítem

dc.contributor.authorPiña A
dc.contributor.authorCortés D
dc.contributor.authorDonado L.D
dc.contributor.authorBlessent D.
dc.date.accessioned2022-09-14T14:33:43Z
dc.date.available2022-09-14T14:33:43Z
dc.date.created2022
dc.identifier.issn1205609
dc.identifier.urihttp://hdl.handle.net/11407/7449
dc.descriptionTunnels commonly go through fracture zones, which are analyzed as an equivalent porous medium with homogeneous permeability. However, this is a rough simplification that overlooks the connection triggered by underground works in fractured massifs. This study introduces the use of synthetic discrete fracture networks (DFN) to analyze groundwater inflows through tunnel excavation in a fractured zone while considering the daily advance of the drilling front. First, a hypothetical case with six different settings, varying fracture length and density, as well as aperture distribution, was analyzed. Each setting had about 100 realizations. DFN hydraulic properties were estimated and compared with previous DFN studies, displaying the same behavior even though the magnitude of the estimated parameters differed. As an application example, structural measurements of the Alaska fault zone in the La Línea massif (Colombia) were used to obtain the statistical parameters of fracture length and aperture distributions to generate the DFN. Five settings were built, obtaining measured and simulated groundwater inflows of the same order of magnitude. These results highlight the potential of synthetic discrete fracture networks to analyze the effects of tunnel construction on groundwater flow. © 2022, Universidad Nacional de Colombia. All rights reserved.eng
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85114182645&doi=10.15446%2fing.investig.v42n1.89889&partnerID=40&md5=e0fa314753c06a6c47c900fe2942594f
dc.sourceIngenieria e Investigacion
dc.titleEmbedded discrete farcture networks to analyze groundwater inflows during tunnel drilling [Redes de fracturas discretas embebidas para el análisis de infiltraciones de agua subterránea durante la excavación de túneles]
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.15446/ing.investig.v42n1.89889
dc.subject.keywordDiscrete fracture networkseng
dc.subject.keywordGroundwater inflowseng
dc.subject.keywordNumerical modelingeng
dc.subject.keywordTunneleng
dc.relation.citationvolume42
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationPiña, A., School of Engineering, Universidad Nacional de Colombia, Colombia
dc.affiliationCortés, D., School of Engineering, Universidad Nacional de Colombia, Bogota, Colombia
dc.affiliationDonado, L.D., School of Engineering, Universidad Nacional de Colombia, Bogota, Colombia
dc.affiliationBlessent, D., Universidad de Medellín, Colombia, Colombia
dc.relation.referencesAdler, P., Thovert, J.-F., Mourzenko, V., (2012) Fractured Porous Media, , (1st ed). Oxford University Press
dc.relation.referencesAkaike, H., A New Look at the Statistical Model Identification (1974) IEEE Transactions on Automatic Control, 19 (6), pp. 716-723
dc.relation.referencesAnderson, M., Woessner, W., Hunt, R., (2015) Applied Groundwater Modeling Simulation of Flow and Advective Transport, , (2nd ed). Elsevier
dc.relation.references(2013) HydroGeoSphere user manual, , https://www.aquanty.com/hydrogeosphere, Aquanty Inc
dc.relation.referencesAttanayake, P. M., Waterman, M. K., Identifying environmental impacts of underground construction (2006) Hydrogeology Journal, 14, pp. 1160-1170
dc.relation.referencesBonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., Berkowitz, B., Scaling of fracture systems in geological media (2001) Reviews of Geophysics, 39 (3), pp. 347-383
dc.relation.referencesButscher, C., Einstein, H. H., Huggenberger, P., Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks (2011) Water Resources Research, 47 (11), pp. 1-17
dc.relation.referencesButscher, C., Steady-state groundwater inflow into a circular tunnel (2012) Tunnelling and Underground Space Technology, 32, pp. 158-167
dc.relation.referencesCavanaugh, J. E., Unifying the derivations for the Akaike and corrected Akaike information criteria (1997) Statistics & Probability Letters, 33 (2), pp. 201-208
dc.relation.referencesChiu, Y.-C., Chia, Y., The impact of groundwater discharge to the Hsueh-Shan tunnel on the water resources in northern Taiwan (2012) Hydrogeology Journal, 20, pp. 1599-1611
dc.relation.referencesCelico, P., Fabbrocino, S., Petitta, M., Tallini, M., Hydrogeological impact of the Gran Sasso motor-way tunnels (Central Italy) (2005) Giornale di Geologia Applicata, 1, pp. 157-165
dc.relation.referencesDavy, P., Le Goc, R., Darcel, C., Bour, O., de Dreuzy, J.-R., Munier, R., A likely universal model of fracture scaling and its consequence for crustal hydromechanics (2010) Journal of Geophysical Research: Solid Earth, 115 (B10), pp. 1-13
dc.relation.referencesde Dreuzy, J.-R., Davy, P., Bour, O., Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. Effective connectivity (2001) Water Resources Research, 37 (8), pp. 2065-2078
dc.relation.referencesde Dreuzy, J.-R., Davy, P., Bour, O., Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture (2001) Water Resources Research, 38 (2), p. 12. , 1-12-9
dc.relation.referencesEl Tani, M., Circular tunnel in a semi-infinite aquifer (2003) Tunnelling and Underground Space Technology, 18 (1), pp. 49-55
dc.relation.referencesEscobar, G., (2017) Manual de geología para ingenieros, , https://repositorio.unal.edu.co/handle/unal/3145, Universidad Nacional de Colombia, Sede Manizales
dc.relation.referencesEvans, D. D., Nicholson, T. J., Rasmussen, T. C., Flow and Transport Through Unsaturated Fractured Rock (2001) American Geophysical Union, , (Eds)
dc.relation.referencesFadakar Alghalandis, Y., ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications (2017) Computers and Geosciences, 102, pp. 1-11
dc.relation.referencesFarhadian, H., Katibeh, H., Huggenberger, P., Butscher, C., Optimum model extent for numerical simulation of tunnel inflow in fractured rock (2016) Tunnelling and Underground Space Technology, 60, pp. 21-29
dc.relation.referencesFont-Capó, J., Vázquez-suñé, E., Carrera, J., Martí, D., Groundwater in flow prediction in urban tunneling with a tunnel boring machine (TBM) (2011) Engineering Geology, 121 (1-2), pp. 46-54
dc.relation.references(2018) FracMan, , https://www.golder.com/fracman/, Golder Associates Inc
dc.relation.referencesGolian, M., Teshnizi, E. S., Nakhaei, M., Prediction of water inflow to mechanized tunnels during tunnel-boring-machine advance using numerical simulation (2018) Hydrogeology Journal, 26, pp. 2827-2851
dc.relation.referencesGoodman, R., Moye, D., Schalkwyk, A., Javandel, I., Groundwater inflows during tunnel driving (1965) Bulletin of the International Association of Geologists, 2, pp. 35-56
dc.relation.referencesHartley, L., Joyce, S., Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden (2013) Journal of Hydrology, 500, pp. 200-216
dc.relation.referencesHawkins, I. R., Swift, B. T., Hoch, a. R., Wendling, J., Comparing flows to a tunnel for single porosity, double porosity and discrete fracture representations of the EDZ (2011) Physics and Chemistry of the Earth, Parts A/B/C, 36 (17-18), pp. 1990-2002
dc.relation.referencesHernández, F., Kammer, A., (2016) Caracterización estructural de los complejos Cajamarca y Quebradagrande en la zona del túnel de la línea, con implicaciones hidrogeológicas, , [Undergraduate thesis]
dc.relation.referencesHeuer, R., Estimating rock-tunnel water inflow (1995) Proceedings of the Rapid Excavation and Tunneling Conference, pp. 41-60. , G. E. Williamson (Ed) SME
dc.relation.referencesHokr, M., Škarydová, I., Frydrych, D., Modelling of tunnel inflow with combination of discrete fractures and continuum (2012) Computing and Visualization in Science, 15, pp. 21-28
dc.relation.referencesHokr, M., Shao, H., Gardner, W. P., Balvín, A., Kunz, H., Wang, Y., Vencl, M., Real-case benchmark for flow and tracer transport in the fractured rock (2016) Environmental Earth Sciences, 75 (18), p. 1273
dc.relation.referencesHu, L. T., Chen, C. X., Analytical methods for transient flow to a well in a confined-unconfined aquifer (2008) Ground Water, 46 (4), pp. 642-646
dc.relation.referencesHyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., Viswanathan, H. S., DFN WORKS: A discrete fracture network framework for modeling subsurface flow and transport (2015) Computers and Geosciences, 84, pp. 10-19
dc.relation.references(2007) Estudios hidrogeológicos e hidrológicos en el área de influencia del túnel piloto de la línea, enmarcado dentro de la gestión ambiental, , IRENA IRENA
dc.relation.references(2010) Actualización a 2009 del modelo hidrogeológico del Túnel de la Línea, , IRENA INIVIAS-Ministerio del Transporte
dc.relation.referencesKarlsrud, K., Water control when tunneling under urban areas in the Olso region (2003) NFF publication, 12, pp. 27-33
dc.relation.referencesKashyap, R. L., Optimal Choice of AR and MA Parts in Autoregressive Moving Average Models (1982) IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4 (2), pp. 99-104
dc.relation.referencesLee, H., Son, B., Kim, Y., Jeon, S., Discrete fracture network and equivalent hydraulic conductivity for tunnel seepage analysis in rock mass (2006) Tunnelling and Underground Space Technology, 21 (3-4), p. 403
dc.relation.referencesLeung, C. T. O., Zimmerman, R. W., Estimating the Hydraulic Conductivity of Two-Dimensional Fracture Networks Using Network Geometric Properties (2012) Transport in Porous Media, 93, pp. 777-797
dc.relation.referencesLiu, R., Li, B., Jiang, Y., A fractal model based on a new governing equation of fluid flow in fractures for characterizing hydraulic properties of rock fracture networks (2016) Computers and Geotechnics, 75, pp. 57-68
dc.relation.referencesLiu, R., Yu, L., Jiang, Y., Wang, Y., Li, B., Recent developments on relationships between the equivalent permeability and fractal dimension of two-dimensional rock fracture networks (2017) Journal of Natural Gas Science and Engineering, 45, pp. 771-785
dc.relation.referencesLoew, S., Lutzenkirchen, V., Hansmann, J., Ryf, A., Guntli, P., Transient surface deformations caused by the Gotthard Base Tunnel (2015) International Journal of Rock Mechanics and Mining Sciences, 75, pp. 82-101
dc.relation.referencesMaillot, J., Davy, P., Le Goc, R., Darcel, C., de Dreuzy, J.-R., Connectivity, permeability and channeling in randomly-distributed and kinematically-defined discrete fracture network models (2016) Water Resources Research, 52 (11), pp. 613-615
dc.relation.referencesMaréchal, J.-C., Perrochet, P., Tacher, L., Longterm simulations of thermal and hydraulic characteristics in a mountain massif: The Mont Blanc case study, French and Italian Alps (1999) Hydrogeology Journal, 7, pp. 341-354
dc.relation.referencesMaréchal, J.-C., Etcheverry, J., The use of 3H and 18O tracers to characterize water inflows in Alpine tunnels (2003) Applied Geochemistry, 18 (3), pp. 339-351
dc.relation.referencesMaréchal, J.-C., Lanini, S., Aunay, B., Perrochet, P., Analytical solution for modeling discharge into a tunnel drilled in a heterogeneous unconfined aquifer (2014) Ground Water, 52 (4), pp. 597-605
dc.relation.references(2018) MoFrac: Discrete fracture network modeling, , https://mofrac.com, Mirarco
dc.relation.referencesMolinero, J., Samper, J., Juanes, R., Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks (2002) Engineering Geology, 64 (4), pp. 369-386
dc.relation.referencesMoon, J., Fernandez, G., Effect of Excavation-Induced Groundwater Level Drawdown on Tunnel Inflow in a Jointed Rock Mass (2010) Engineering Geology, 110 (3-4), pp. 33-42
dc.relation.referencesNikvar Hassani, A., Farhadian, H., Katibeh, H., A comparative study on evaluation of steady-state groundwater inflow into a circular shallow tunnel (2018) Tunnelling and Underground Space Technology, 73, pp. 15-25
dc.relation.referencesPerrochet, P., Confined flow into a tunnel during progressive drilling: An analytical solution (2005) Ground Water, 43 (6), pp. 943-946
dc.relation.referencesPerrochet, P., Dematteis, A., Modeling transient discharge into a tunnel drilled in a heterogeneous formation (2007) Ground Water, 45 (6), pp. 786-790
dc.relation.referencesPreisig, G., (2013) Regional simulation of coupled hydromechanical processes in fractured and granular porous aquifer using effective stress-dependent parameters, , [Doctoral thesis, University of Neuchâtel]
dc.relation.referencesPreisig, G., Dematteis, A., Torri, R., Monin, N., Milnes, E., Perrochet, P., Modelling discharge rates and ground settlement induced by tunnel excavation (2014) Rock Mechanics and Rock Engineering, 47, pp. 869-884
dc.relation.referencesRizzo, R. E., Healy, D., de Siena, L., Benefits of maximum likelihood estimators for fracture attribute analysis: Implications for permeability and up-scaling (2017) Journal of Structural Geology, 95, pp. 17-31
dc.relation.referencesSchwarz, G., Estimating the Dimension of a Model (1978) The Annals of Statistics, 6 (2), pp. 461-464
dc.relation.referencesShen, S.-L., Wu, H.-N., Cui, Y.-J., Yin, Z.-Y., Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai (2014) Tunnelling and Underground Space Technology, 40, pp. 309-323
dc.relation.referencesSiena, M., Riva, M., Giamberini, M., Gouze, P., Guadagnini, A., Statistical modeling of gas-permeability spatial variability along a limestone core (2017) Spatial Statistics, 34, p. 100249
dc.relation.referencesSinghal, B. B. S., Gupta, R., (2010) Applied Hydrogeology of Fractured Rocks, , Springer
dc.relation.referencesSomogyvári, M., Jalali, M., Jiménez-Parras, S., Bayer, P., Synthetic fracture network characterization with transdimensional inversion (2017) Water Resources Research, 53 (6), pp. 5104-5123
dc.relation.referencesSu, K., Zhou, Y., Wu, H., Shi, C., Zhou, L., An Analytical Method for Groundwater Inflow into a Drained Circular Tunnel (2017) Ground Water, 55 (5), pp. 1-10
dc.relation.references(2010) Evaluación del impacto de la construcción de los túneles viales del Sumpaz y de La Línea en los hidrosistemas circunvecinos [Doctoral thesis, Universidad Nacional de Colombia], , https://repositorio.unal.edu.co/handle/unal/68766, Universidad Nacional de Colombia (UNAL) Grupo de Investigación en Ingeniería de Recursos Hídricos
dc.relation.references(2015) Informe Final Ensayos Hidráulicos Especiales en el Macizo Fracturado de La Línea, , Universidad Nacional de Colombia (UNAL) Grupo de Investigación en Ingeniería de Recursos Hídricos, 2015
dc.relation.referencesValenzuela, P., Domínguez-Cuesta, M. J., Meléndez-Asensio, M. J., Jiménez-Sánchez, M., de Santa María, J. A. S., Active sinkholes: A geomorphological impact of the Pajares Tunnels (Cantabrian Range, NW Spain) (2015) Engineering Geology, 196, pp. 158-170
dc.relation.referencesVincenzi, V., Gargini, A., Goldscheider, N., Using tracer tests and hydrological observations to evaluate effects of tunnel drainage on groundwater and surface waters in the Northern Apennines (Italy) (2009) Rock Mechanics and Rock Engineering, 17, pp. 135-150. , Hydrogeology Journal, 10.1007/s10040-008-0371-5 Wang, X. and Cai, M. (2020). A DFN DEM Multi-scale Modeling Approach for Simulating Tunnel Excavation Response in Jointed Rock Masses. 53, 1053-1077
dc.relation.referencesWoods, J. A., Teubner, M. D., Simmons, C. T., Narayan, K. A., Numerical error in groundwater flow and solute transport simulation (2003) Water Resources Research, 39 (6)
dc.relation.referencesXia, Q., Xu, M., Zhang, H., Zhang, Q., Xiao, X., A dynamic modeling approach to simulate groundwater discharges into a tunnel from typical heterogenous geological media during continuing excavation (2018) KSCE Journal of Civil Engineering, 22, pp. 341-350
dc.relation.referencesYang, F.-R., Lee, C.-H., Kung, W.-J., Yeh, H.-F., The impact of tunneling construction on the hydrogeological environment of “Tseng-Wen Reservoir Transbasin Diversion Project” in Taiwan (2009) Engineering Geology, 103 (1-2), pp. 39-58
dc.relation.referencesYe, M., Meyer, P. D., Neuman, S. P., On model selection criteria in multimodel analysis (2008) Water Resources Research, 44 (3), pp. 1-12
dc.relation.referencesZarei, H. R., Uromeihy, A., Sharifzadeh, M., Evaluation of high local groundwater inflow to a rock tunnel by characterization of geological features (2011) Tunnelling and Underground Space Technology, 26 (2), pp. 364-373
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem