Mostrar el registro sencillo del ítem

dc.contributor.authorJiménez J.E.H
dc.contributor.authorNyiraneza J
dc.contributor.authorFraser T.D
dc.contributor.authorBrown H.C.P
dc.contributor.authorLopez-Sanchez I.J
dc.contributor.authorBotero-Botero L.R.
dc.date.accessioned2022-09-14T14:33:43Z
dc.date.available2022-09-14T14:33:43Z
dc.date.created2021
dc.identifier.issn84271
dc.identifier.urihttp://hdl.handle.net/11407/7451
dc.descriptionStruvite is a phosphorus (P)-rich by-product of wastewater treatment facilities that can be recycled as a P source in agriculture. Because struvite is not water soluble, it is solubilized gradually by organic acids released by soil microorganisms and from growing plant roots when used as fertilizer. To speed up the solubilization process, struvite can be combined with biostimulants such as P-solubilizing bacteria (PSB) or earthworm casts (WC). The objective of this greenhouse study was to compare the fertilizer value of struvite, with and without PSB (Bacillus megaterium) or WC, with that of triple superphosphate in two contrasting soils (a low-P soil and a high-P soil). Oat (Avena sativa L.) was grown for 8 wk under a controlled environment, and dry matter yield at harvest, total N and total P uptake, the soil residual Mehlich-3 P, and phosphomonoesterase activity were measured. The high-P soil was unresponsive to P application, but the low-P soil was responsive. In the low-P soil, there was more Mehlich-3-extracted P when struvite was combined with PSB or WC compared with struvite alone, resulting in greater oat dry matter and more total N and more total P uptake. Combining struvite with biostimulants increased total dry matter and total P uptake by an average of 39% and 33%, respectively. We conclude that greater P release from struvite occurs when it is combined with PSB or WC, particularly in low-P soil, but this needs to be confirmed in field-scale studies. © Agricultural Institute of Canada. All rights reserved.eng
dc.language.isoeng
dc.publisherAgricultural Institute of Canada
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85102063513&doi=10.1139%2fcjss-2019-0147&partnerID=40&md5=7ca791f755c50527d4622c74d850f85e
dc.sourceCanadian Journal of Soil Science
dc.titleEnhancing phosphorus release from struvite with biostimulants
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1139/cjss-2019-0147
dc.subject.keywordEarthworm castseng
dc.subject.keywordOateng
dc.subject.keywordP-solubilizing bacteriaeng
dc.subject.keywordPhosphoruseng
dc.subject.keywordStruviteeng
dc.relation.citationvolume101
dc.relation.citationissue1
dc.relation.citationstartpage22
dc.relation.citationendpage32
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationJiménez, J.E.H., Environmental Measurements Research Group (GEMA), University of Medellín, Carrera 87 No. 30–65, Bloque 4-108, Medellin, Colombia, Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
dc.affiliationNyiraneza, J., Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
dc.affiliationFraser, T.D., Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
dc.affiliationBrown, H.C.P., University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
dc.affiliationLopez-Sanchez, I.J., Environmental Measurements Research Group (GEMA), University of Medellín, Carrera 87 No. 30–65, Bloque 4-108, Medellin, Colombia
dc.affiliationBotero-Botero, L.R., Biodiversity, Biotechnology and Bioengineering Research Group (GRINBIO), University of Medellín, Carrera 87 No. 30–65, Bloque 3-202, Medellin, Colombia
dc.relation.referencesAfzal, A., Bano, A., Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.) (2008) Int. J. Agric. Biol., 10, pp. 85-88
dc.relation.referencesAhmed, S., Klassen, T.N., Keyes, S., Daly, M., Jones, D.L., Mavrogordato, M., Imaging the interaction of roots and phosphate fertiliser granules using 4D X-ray tomography (2015) Plant Soil, 401, pp. 125-134
dc.relation.referencesAndrews, M., Sprent, J.I., Raven, J.A., Eady, P.E., Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies (1999) Plant Cell Environ, 22, pp. 949-958
dc.relation.referencesBell, C.W., Fricks, B.E., Rocca, J.D., Steinweg, J.M., McMahon, S.K., Wallestein, M.D., High-throughput fluorometric measurement of potential soil extracellular enzyme activities (2013) J. Vis. Exp., (81)
dc.relation.referencesBaldrian, P., Microbial enzyme-catalyzed processes in soils and their analysis (2009) Plant Soil Environ, 55, pp. 370-378
dc.relation.referencesBenjannet, R., Nyiraneza, J., Kiari, L., Fuller, K., Bizimungu, B., Savoie, D., An agroenvironmental phosphorus model in the Canadian Martime provinces (2018) Agron. J., 110, pp. 2566-2575
dc.relation.referencesBenjannet, R., Khiari, L., Nyiraneza, J., Thompson, B., He, J., Geng, X., Identifying environmental phosphorus risk classes at the scale of Prince Edward Island, Canada (2018) Can. J. Soil Sci., 98, pp. 317-329
dc.relation.referencesBenjannet, R., Nyiraneza, J., Khiari, R., Cambouris, A., Fuller, K., Hann, S., Ziadi, N., Potato response to struvite in comparison with conventional phosphorus fertilizer in eastern Canada (2020) Agron. J.
dc.relation.referencesBulut, S., Evaluation of efficiency parameters of phospho-rous-solubilizing and N-fixing bacteria inoculation in wheat (Triticum aestivum L.) (2013) Turk. J. Agric. For., 37, pp. 734-743
dc.relation.referencesBundy, L.G., Tunney, H., Halvorson, A.D., (2005) Agronomic Aspects of Phosphorus Management. Pages 685–727 in Phosphorus: Agriculture and the Environment. Agronomy Monographs, p. 47. , ASA, CSSSA, SSSA, Madison, WI, USA
dc.relation.referencesCabeza, R., Steingrobe, B., Römer, W., Claassen, N., Effectiveness of recycled P products as P fertilisers as evaluated in pot experiments (2011) Nutr. Cycl. Agroecosyst., 91, pp. 173-184
dc.relation.referencesCampbell, C.R., Plank, C.O., Preparation of plant tissue for laboratory analysis (1998) Handbook of Reference Methods for Plant Analysis. CRC Press, pp. 37-50. , . Pages , in Y.P. Kalra, ed. , Boca Raton, FL, USA
dc.relation.referencesChaoui, H.I., Zibilske, L.M., Ohno, T., Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability (2003) Soil Biol. Biochem., 35, pp. 295-302
dc.relation.referencesCho, J.H., Lee, J.E., Ra, C., Microwave irradiation as a way to reutilize the recovered struvite slurry and to enhance system performance (2009) J. Anim. Sci. Technol., 51 (4), pp. 337-342
dc.relation.referencesCrawford, N.M., Nitrate: Nutrient and signal for plant growth (1995) Plant Cell, 7, pp. 859-868. , 7640524
dc.relation.referencesDaneshgar, S., Callegari, A., Capodaglio, A.G., Vaccari, D., The potential phosphorus crisis: Resource conservation and possible escape technologies: A review (2018) Resources, 7 (2), p. 37
dc.relation.referencesDeubel, A., Gransee, A., Merbach, W., Transformation of organic rhizodeposits by rhizoplane bacteria and its influence on the availability of tertiary calcium phosphate (2000) J. Plant. Nutr. Soil Sci., 163, pp. 387-392
dc.relation.referencesEdwards, C.A., Historical overview of vermicomposting (1995) Biocycle, 36, pp. 56-58
dc.relation.referencesGerman, D.P., Weintraub, M.N., Grandy, A.S., Lauber, C.L., Rinkes, Z.L., Allison, S.D., Optimization of hydro-lytic and oxidative enzyme method for ecosystem studies (2011) Soil Biol. Biochem., 43, pp. 1387-1397
dc.relation.referencesGniazdowska, A., Mikulska, M., Rychter, A.M., Growth, nitrate uptake and respiration rate in bean roots under phosphate deficiency (1998) Biol. Plant., 41, pp. 217-226
dc.relation.referencesGniazdowska, A., Krawczak, A., Mikulska, M., Rychter, A.M., Low phosphate nutrition alters bean plant’s ability to assimilate and translocate nitrate (1999) J. Plant Nutr., 22, pp. 551-563
dc.relation.referencesGonzales-Ponce, R., López-De-sà, E., Plaza, C., Lettuce response to phosphorus fertilization with struvite recovered from municipal wastewater (2009) Hort. Sci., 44 (2), pp. 426-430
dc.relation.referencesGyaneshwar, P., Kumar, G.N., Parekh, L.J., Poole, P.S., Role of soil microorganisms in improving P nutrition of plants (2002) Plant Soil, 245, pp. 83-93
dc.relation.referencesHan, H.S., Supanjani, and Lee, K.D. 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ. 52(3): 130–137. doi:10.17221/3356-PSE
dc.relation.referencesHeathwaite, A.L., Dils, R.M., Characterising phosphorus loss in surface and subsurface hydrological pathways (2000) Sci. Total Environ., 251, pp. 523-538
dc.relation.referencesHendershot, W.H., Lalande, H., Duquette, M., Soil reaction and exchangeable acidity (2008) Soil Sampling and Methods of Analysis, 2Nd Ed. Taylor and Francis, pp. 173-178. , . Pages , in M.R. Carter, ed. , Boca Raton, FL, USA
dc.relation.referencesIsrael, D.W., Rufty, T.W., Cure, J.D., Nitrogen and phosphorus nutritional interactions in a CO2 enriched environment (1990) J. Plant Nutr., 13, pp. 1419-1433
dc.relation.referencesJaffer, Y., Clark, T.A., Pearce, P., Parsons, S.A., Potential phosphorus recovery by struvite formation (2002) Water Res, 36, pp. 1834-1842. , 12044083
dc.relation.referencesKauwenbergh, S.J., Stewart, M., Mikkelesen, R., World reserves of phosphate rock — a dynamic and unfolding story (2013) Better Crops, 79, pp. 18-20
dc.relation.referencesLee, R.B., Selectivity and kinetics of ion uptake by barley plants following nutrient deficiency (1982) Ann. Bot., 50, pp. 429-449
dc.relation.referencesMadani, H., Malboobi, M.A., Bakhshkelarestachi, K., Stoklosa, A., Biological and chemical phosphorus fertilizers effect on yield and P accumulation in rapeseed (2011) Brassica Napus L.). Not. Bot. Hortic. Agrobot. Cluj-Napoca, 40, pp. 210-214
dc.relation.referencesMassey, M.S., Davis, J.G., Ippolito, J., Sheffield, R.E., Effectiveness of recovered magnesium phosphates as fertilisers in neutral and slightly alkaline soils (2009) Agron. J., 101, pp. 323-329
dc.relation.referencesMaterechera, S.A., Nutrient availability and maize growth in a soil amended with earthworm cats from a South African indigenous species (2002) Bioresour. Technol., 84, pp. 197-201. , 12139338
dc.relation.referencesMehlich, A., Mehlich-3 soil test extractant: A modification of Mehlich-2 extractant (1984) Soil Sci. Plant Anal., 15 (12), pp. 1409-1416
dc.relation.referencesMehvarz, S., Chaichi, M., Effects of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of barely (Hordeum vulgare L.). Am (2008) Euras. J. Agric. Environ. Sci., 3, pp. 822-828
dc.relation.referencesMittal, V., Singh, O., Nayyar, H., Kaur, J., Tewari, R., Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2) (2008) Soil Biol. Biochem., 40, pp. 718-727
dc.relation.referencesMunawar, M., Fitzpatrick, M.A.J., Eutrophication in three Canadian areas of concern: Phytoplankton and major nutrient interactions (2018) Aquat. Ecosyst. Health Manage., 21, pp. 421-437
dc.relation.referencesNahas, E., Factors determining rock phosphate solubilization by microorganism isolated from soil (1996) World J. Microbiol. Biotechnol., 12, pp. 567-572
dc.relation.referencesPEI Department of Agriculture and Fisheries. 2017. Nutrient recommendation tables. Available from https://www.princeedwardisland.ca/sites/default/files/publications/af_nutrient_recommendation_tables_.pdf [8 Jan. 2018]
dc.relation.referencesPradhan, N., Sukla, L.B., Solubilization of inorganic phosphate by fungi isolated from agriculture soil (2005) Afr. J. Biotechnol., 5, pp. 850-854
dc.relation.referencesPrietzel, J., Klysubun, W., Werner, F., Speciation of phosphorus in temperate zone forest soils as assessed by combined wet-chemical fractionation and XANES spectroscopy (2016) J. Plant Nutr. Soil Sci., 179, pp. 168-185
dc.relation.referencesRahman, M.M., Liu, Y., Kwag, J.-H., Ra, C., Recovery of struvite from animal wastewater and its nutrient leaching loss in soil (2011) J. Hazard. Mater., 186, pp. 2026-2030. , 21236571
dc.relation.referencesRech, I., Withers, P.J.A., Jones, D.L., Pavinato, P.S., Solubility, diffusion and crop uptake of phosphorus in three different struvites (2018) Sustainability, 11, pp. 134-215
dc.relation.referencesReijnders, L., Phosphorus resources, their depletion and conservation, a review (2014) Resour. Conserv. Recycl., 93, pp. 32-49
dc.relation.referencesRufty, T.W., Mackown, C.T., Israel, D.W., Phosphorus stress effects on assimilation of nitrate (1990) Plant Physiol, 94, pp. 328-333. , 16667705
dc.relation.referencesRufty, T.W., Israel, D.W., Volk, R.J., Qiu, J., Sa, T., Phosphate regulation of nitrate assimilation in soybean (1993) J. Exp. Bot., 44, pp. 879-891
dc.relation.referencesRychter, A., Chauveau, M., Bomsel, J.-L., Lance, C., The effect of phosphate deficiency on mitochondrial activity and adenylate in bean roots (2006) Physiol. Plant., 84, pp. 80-86
dc.relation.referencesRychter, A.M., Mikulska, M., The relationship between phosphate status and cyanide-resistant respiration in bean roots (1990) Physiol. Plant., 79, pp. 663-667. , 21087276
dc.relation.references(2010) SAS Onlinedoc. Version 9, p. 3. , SAS Institute Inc., Cary, NC, USA
dc.relation.referencesSaeid, A., Prochownik, E., Dobrowolska-Iwanek, J., Phosphorus solubilisation by Bacillus species (2018) Molecules, 23 (11), p. 2897
dc.relation.referencesSangwan, P., Garg, V.K., Kaushik, C.P., Growth and yield response of marigold to potting media containing vermicompost produced from different wastes (2010) Environmentalist, 30, pp. 123-130
dc.relation.referencesSatyaprakash, M., Nikitha, T., Sadhana, B., Reddi, E.U.B., Satya Vani, S., Phosphorus and phosphate solubilising bacteria and their role in plant nutrition (2017) Int. J. Curr. Microbiol. Appl. Sci., 6, pp. 2133-2144
dc.relation.referencesSharpley, A.N., Smith, S.J., Nitrogen and phosphorus forms in soils receiving manure (1995) Soil Sci, 159, pp. 253-258
dc.relation.referencesSoil Classification Working Group. 1998. The Canadian system of soil classification. [Online]. Available from http://sis.agr.gc.ca/cansis/publications/manuals/1998-cssc-ed3/cssc3_manual.pdf [24 Apr. 2020]
dc.relation.referencesSpiers, G.A., McGill, W.B., Effects of phosphorus addition and energy supply on acid phosphatase production and activity in soils (1979) Soil Biol. Biochem., 11, pp. 3-8
dc.relation.referencesStachelek, J., Ford, C., Kincaid, D., King, K., Miller, H., Nagelkirk, R., The national eutrophication survey: Lake characteristics and historical nutrient concentrations (2018) Earth Syst. Sci. Data, 10, pp. 86-86
dc.relation.referencesSundara, B., Natarajan, V., Hari, K., Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields (2002) Field Crops Res, 77, pp. 43-49
dc.relation.referencesSwain, M.R., Laxminarayana, K., Ray, R.C., Phosphorus solubilization by thermotolerant Bacillus subtilis isolated from cow dung microflora (2012) Agric. Res., 1, pp. 273-279
dc.relation.referencesTalboys, P.J., Heppell, J., Roose, T., Healey, J.R., Jones, D.L., Withers, P.J., Struvite: A slow-release fertiliser for sustainable phosphorus management (2016) Plant Soil, 401, pp. 109-123. , 27429478
dc.relation.referencesTiwari, S.C., Mishra, R.R., Fungal abundance and diversity in earthworm casts and in uningested soil (1993) Biol. Fertil. Soils, 16, pp. 131-134
dc.relation.referencesTiwari, S.C., Tiwari, B.K., Mishra, R.R., Microbial populations, enzyme activities and nitrogen-phosphorus-potassium enrichment in earthworm casts and in the surrounding soil of a pineapple plantation (1989) Biol. Fertil. Soils, 8, pp. 178-182
dc.relation.referencesTomati, U., Grappelli, A., Galli, E., The hormone-like effect of earthworm casts on plant growth (1988) Biol. Fertil. Soils, 5, pp. 288-294
dc.relation.referencesVarsha Bioscience and Technology. 2011. Bio fertilizer phosphomax. Available from http://www.varshabioscience.com/products/phosphomax.html∼ [30 May 2019]
dc.relation.referencesVinotha, S.P., Parthasaranthi, K., Ranganathan, L.S., Enhanced phosphatase activity in earthworm casts is more of microbial origin (2000) Curr. Sci., 79, pp. 1158-1159
dc.relation.referencesWalpola, B.C., Yoon, M., Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review (2012) Afr. J. Microbiol. Res., 6, pp. 6600-6605
dc.relation.referencesWhithers, P.J.A., Haygarth, P.M., Agriculture, phosphorus and eutrophication: A European perspective (2007) Soil Use Manage, 23, pp. 1-4
dc.relation.referencesWyciszkiewicz, M., Saeid, A., Dobrowolska-Iwanek, J., Chojnacka, K., Utilization of microorganisms in the solubilisation of low-quality phosphorus raw material (2016) Ecol. Eng., 89, pp. 109-113
dc.relation.referencesWyciszkiewicz, M., Sojka, M., Saeid, A., Production of phosphorus biofertilizer based on the renewable materials in large laboratory scale (2019) Open Chem, 17, pp. 893-901
dc.relation.referencesYousefi, A., Khavazi, K., Moezi, A., Rejali, F., Nadian, H.A., Phosphate solubilizing bacteria and Arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth (2011) World Appl. Sci. J., 15, pp. 1310-1318
dc.relation.referencesZaller, J.G., Vermicompost as substitute for peat in potting media: Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties (2007) Sci. Hortic., 112, pp. 191-199
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem