Show simple item record

dc.contributor.authorAcelas N
dc.contributor.authorLopera S.M
dc.contributor.authorPorras J
dc.contributor.authorTorres-Palma R.A.
dc.date.accessioned2022-09-14T14:33:44Z
dc.date.available2022-09-14T14:33:44Z
dc.date.created2021
dc.identifier.issn14203049
dc.identifier.urihttp://hdl.handle.net/11407/7452
dc.descriptionThis study aimed to understand the adsorption process of cephalexin (CPX) from aqueous solution by a biochar produced from the fiber residue of palm oil. Scanning electron microscopy, Fourier transform infrared spectroscopy, Boehm titration, and the point of zero charge were used to characterize the morphology and surface functional groups of the adsorbent. Batch tests were carried out to evaluate the effects of the solution pH, temperature, and antibiotic structure. The adsorption behavior followed the Langmuir model and pseudo-second-order model with a maximum CPX adsorption capacity of 57.47 mg g−1. Tests on the thermodynamic behavior suggested that chemisorption occurs with an activation energy of 91.6 kJ mol−1 through a spontaneous endothermic process. Electrostatic interactions and hydrogen bonding represent the most likely adsorption mechanisms, although π–π interactions also appear to contribute. Finally, the CPX removal efficiency of the adsorbent was evaluated for synthetic matrices of municipal wastewater and urine. Promising results were obtained, indicating that this adsorbent can potentially be applied to purifying wastewater that contains trace antibiotics. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85108110026&doi=10.3390%2fmolecules26113340&partnerID=40&md5=fbc319bb882408c119677314a9cff076
dc.sourceMolecules
dc.titleEvaluating the removal of the antibiotic cephalexin from aqueous solutions using an adsorbent obtained from palm oil fiber
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.3390/molecules26113340
dc.subject.keywordAdsorptioneng
dc.subject.keywordBiochareng
dc.subject.keywordCephalexineng
dc.subject.keywordIsothermeng
dc.subject.keywordKineticseng
dc.subject.keywordWastewatereng
dc.relation.citationvolume26
dc.relation.citationissue11
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationAcelas, N., Grupo de Materiales con Impacto, MAT and MPAC, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050010, Colombia
dc.affiliationLopera, S.M., Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
dc.affiliationPorras, J., Grupo de Investigaciones Biomédicas Uniremington, Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, 050010, Colombia
dc.affiliationTorres-Palma, R.A., Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
dc.relation.referencesReza, R.A., Ahmaruzzaman, M., Sil, A.K., Gupta, V.K., Comparative adsorption behavior of ibuprofen and clofibric acid onto microwave assisted activated bamboo waste (2014) Ind. Eng. Chem. Res, 53, pp. 9331-9339. , [Google Scholar] [CrossRef]
dc.relation.referencesMiao, M.S., Liu, Q., Shu, L., Wang, Z., Liu, Y.Z., Kong, Q., Removal of cephalexin from effluent by activated carbon prepared from alligator weed: Kinetics, isotherms, and thermodynamic analyses (2016) Process Saf. Environ. Prot, 104, pp. 481-489. , [Google Scholar] [CrossRef]
dc.relation.referencesWatkinson, A.J., Murby, E.J., Kolpin, D.W., Costanzo, S.D., The occurrence of antibiotics in an urban watershed: From wastewater to drinking water (2009) Sci. Total Environ, 407, pp. 2711-2723. , [Google Scholar] [CrossRef] [PubMed]
dc.relation.referencesPerea, L.A., Palma-Goyes, R.E., Vazquez-Arenas, J., Romero-Ibarra, I., Ostos, C., Torres-Palma, R.A., Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes: Role of bath composition, analysis of degradation pathways and degradation extent (2019) Sci. Total Environ, 648, pp. 377-387. , [Google Scholar] [CrossRef]
dc.relation.referencesZeng, Z.W., Tan, X.F., Liu, Y.G., Tian, S.R., Zeng, G.M., Jiang, L.H., Liu, S.B., Yin, Z.H., Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures (2018) Front. Chem, 6, pp. 1-11. , [Google Scholar] [CrossRef] [PubMed]
dc.relation.referencesMondal, S., Patel, S., Naproxen Removal Capacity Enhancement by Transforming the Activated Carbon into a Blended Composite Material (2020) Water Air Soil Pollut, 231, p. 37. , [Google Scholar] [CrossRef]
dc.relation.referencesNazari, G., Abolghasemi, H., Esmaieli, M., Sadeghi Pouya, E., Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study (2016) Appl. Surf. Sci, 375, pp. 144-153. , [Google Scholar] [CrossRef]
dc.relation.referencesGundogdu, A., Duran, C., Senturk, H.B., Soylak, M., Ozdes, D., Serencam, H., Imamoglu, M., Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: Equilibrium, kinetic, and thermodynamic study (2012) J. Chem. Eng. Data, 57, pp. 2733-2743. , [Google Scholar] [CrossRef]
dc.relation.referencesAhmed, M.J., Theydan, S.K., Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations (2012) Chem. Eng. J, pp. 200-207. , 211, –212, [Google Scholar] [CrossRef]
dc.relation.referencesMohammed, A.A., Kareem, S.L., Adsorption of tetracycline fom wastewater by using Pistachio shell coated with ZnO nanoparticles: Equilibrium, kinetic and isotherm studies (2019) Alex. Eng. J, 58, pp. 917-928. , [Google Scholar] [CrossRef]
dc.relation.referencesJang, H.M., Kan, E., Engineered biochar from agricultural waste for removal of tetracycline in water (2019) Bioresour. Technol, 284, pp. 437-447. , [Google Scholar] [CrossRef] [PubMed]
dc.relation.referencesParedes-Laverde, M., Silva-Agredo, J., Torres-Palma, R.A., Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents (2018) J. Environ. Manag, 213, pp. 98-108. , [Google Scholar] [CrossRef]
dc.relation.referencesParedes-Laverde, M., Salamanca, M., Silva-Agredo, J., Manrique-Losada, L., Torres-Palma, R.A., Selective removal of acetaminophen in urine with activated carbons from rice (Oryza sativa) and coffee (Coffea arabica) husk: Effect of activating agent, activation temperature and analysis of physical-chemical interactions (2019) J. Environ. Chem. Eng, 7, p. 103318. , [Google Scholar] [CrossRef]
dc.relation.referencesGarcia-Nunez, J.A., Ramirez-Contreras, N.E., Rodriguez, D.T., Silva-Lora, E., Frear, C.S., Stockle, C., Garcia-Perez, M., Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents (2016) Resour. Conserv. Recycl, 110, pp. 99-114. , [Google Scholar] [CrossRef]
dc.relation.referencesGiraldo, S., Robles, I., Ramirez, A., Flórez, E., Acelas, N., Mercury removal from wastewater using agroindustrial waste adsorbents (2020) SN Appl. Sci, 2. , [Google Scholar] [CrossRef]
dc.relation.referencesGuechi, E.K., Hamdaoui, O., Evaluation of potato peel as a novel adsorbent for the removal of Cu(II) from aqueous solutions: Equilibrium, kinetic, and thermodynamic studies (2016) Desalin. Water Treat, 57, pp. 10677-10688. , [Google Scholar] [CrossRef]
dc.relation.referencesOmoriyekomwan, J.E., Tahmasebi, A., Zhang, J., Yu, J., Formation of hollow carbon nanofibers on bio-char during microwave pyrolysis of palm kernel shell (2017) Energy Convers. Manag, 148, pp. 583-592. , [Google Scholar] [CrossRef]
dc.relation.referencesFoo, K.Y., Hameed, B.H., Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes (2011) Chem. Eng. J, 173, pp. 385-390. , [Google Scholar] [CrossRef]
dc.relation.referencesGiraldo, S., Ramirez, A.P., Flórez, E., Acelas, N.Y., Adsorbent materials obtained from palm waste and its potential use for contaminants removal from aqueous solutions (2019) J. Phys. Conf. Ser, p. 1386. , [Google Scholar] [CrossRef]
dc.relation.referencesDelgado-Moreno, L., Bazhari, S., Gasco, G., Méndez, A., El Azzouzi, M., Romero, E., New insights into the efficient removal of emerging contaminants by biochars and hydrochars derived from olive oil wastes (2021) Sci. Total Environ, p. 752. , [Google Scholar] [CrossRef]
dc.relation.referencesMohammed, A.A., Al-Musawi, T.J., Kareem, S.L., Zarrabi, M., Al-Ma’abreh, A.M., Simultaneous adsorption of tetracycline, amoxicillin, and ciprofloxacin by pistachio shell powder coated with zinc oxide nanoparticles (2019) Arab. J. Chem, 13, pp. 4629-4643. , [Google Scholar] [CrossRef]
dc.relation.referencesKrasucka, P., Pan, B., Sik Ok, Y., Mohan, D., Sarkar, B., Oleszczuk, P., Engineered biochar—A sustainable solution for the removal of antibiotics from water (2021) Chem. Eng. J, 405, p. 126926. , [Google Scholar] [CrossRef]
dc.relation.referencesGrisales-Cifuentes, C.M., Serna Galvis, E.A., Porras, J., Flórez, E., Torres-Palma, R.A., Acelas, N., Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber (2021) Bioresour. Technol, 326, p. 124753. , [Google Scholar] [CrossRef] [PubMed]
dc.relation.referencesOoi, C.H., Cheah, W.K., Sim, Y.L., Pung, S.Y., Yeoh, F.Y., Conversion and characterization of activated carbon fiber derived from palm empty fruit bunch waste and its kinetic study on urea adsorption (2017) J. Environ. Manag, 197, pp. 199-205. , [Google Scholar] [CrossRef]
dc.relation.referencesKhanday, W.A., Ahmed, M.J., Okoye, P.U., Hummadi, E.H., Hameed, B.H., Single-step pyrolysis of phosphoric acid-activated chitin for efficient adsorption of cephalexin antibiotic (2019) Bioresour. Technol, 280, pp. 255-259. , [Google Scholar] [CrossRef] [PubMed]
dc.relation.referencesNazari, G., Abolghasemi, H., Esmaieli, M., Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon (2016) J. Taiwan Inst. Chem. Eng, 58, pp. 357-365. , [Google Scholar] [CrossRef]
dc.relation.referencesZhang, P., Li, Y., Cao, Y., Han, L., Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures (2019) Bioresour. Technol, 285, p. 121348. , [Google Scholar] [CrossRef]
dc.relation.referencesAnwar, J., Shafique, U., Salman, M., Dar, A., Anwar, S., Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana (2010) Bioresour. Technol, 101, pp. 1752-1755. , [Google Scholar] [CrossRef]
dc.relation.referencesNaghipour, D., Amouei, A., Estaji, M., Taghavi, K., Allahabadi, A., Cephalexin adsorption from aqueous solutions by biochar prepared from plantain wood: Equilibrium and kinetics studies (2019) Desalin. Water Treat, 143, pp. 374-381. , [Google Scholar] [CrossRef]
dc.relation.referencesLagergren, S., (1898) Zur theorie der sogenannten adsorption gelöster Stoffe, , Stockholm Kongl. svenska vetenskaps-akad. Handlinger [Google Scholar] [CrossRef]
dc.relation.referencesHo, Y.S., McKay, G., Kinetic models for the sorption of dye from aqueous solution by wood (1998) Process Saf. Environ. Prot, 76, pp. 183-191. , [Google Scholar] [CrossRef]
dc.relation.referencesWeber, W.J., Morris, J.C., Kinetics of Adsorption on Carbon from Solution (1963) J. Sanit. Eng. Div, 89, pp. 31-60. , [Google Scholar] [CrossRef]
dc.relation.referencesAfshin, S., Rashtbari, Y., Ramavandi, B., Fazlzadeh, M., Vosoughi, M., Mokhtari, S.A., Shirmardi, M., Rehman, R., Magnetic nanocomposite of filamentous algae activated carbon for efficient elimination of cephalexin from aqueous media (2020) Korean J. Chem. Eng, 37, pp. 80-92. , [Google Scholar] [CrossRef]
dc.relation.referencesSamarghandi, M.R., Al-Musawi, T.J., Mohseni-Bandpi, A., Zarrabi, M., Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles (2015) J. Mol. Liq, 211, pp. 431-441. , [Google Scholar] [CrossRef]
dc.relation.referencesArmbruster, M.H., Austin, J.B., The Adsorption of Gases on Plane Surfaces of Mica (1938) J. Am. Chem. Soc, 60, pp. 467-475. , [Google Scholar] [CrossRef]
dc.relation.referencesFreundlich, H., Over the adsorption in solution (1906) J. Phys. Chem, 57, pp. 385-471. , [Google Scholar]
dc.relation.referencesRamirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations (2020) J. Environ. Chem. Eng, 8, p. 103702. , [Google Scholar] [CrossRef]
dc.relation.referencesRashtbari, Y., Hazrati, S., Azari, A., Afshin, S., Fazlzadeh, M., Vosoughi, M., A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: Cephalexin adsorption experiments, mechanisms, isotherms and kinetics (2020) Adv. Powder Technol, , [Google Scholar] [CrossRef]
dc.relation.referencesRoy, A., Adhikari, B., Majumder, S.B., Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber (2013) Ind. Eng. Chem. Res, 52, pp. 6502-6512. , [Google Scholar] [CrossRef]
dc.relation.referencesSajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S., Chiu, W.S., Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution (2011) Bioresour. Technol, 102, pp. 7237-7243. , [Google Scholar] [CrossRef] [PubMed]
dc.relation.referencesBentouami, A., Ouali, M.S., Cadmium removal from aqueous solutions by hydroxy-8 quinoleine intercalated bentonite (2006) J. Colloid Interface Sci, 293, pp. 270-277. , [Google Scholar] [CrossRef] [PubMed]
dc.relation.referencesChia, C.H., Duong, T.D., Nguyen, K.L., Zakaria, S., Thermodynamic aspects of sorption of Fe2+ onto unbleached kraft fibres (2007) J. Colloid Interface Sci, 307, pp. 29-33. , [Google Scholar] [CrossRef] [PubMed]
dc.relation.referencesZhu, X., Liu, Y., Qian, F., Zhou, C., Zhang, S., Chen, J., Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal (2014) Bioresour. Technol, 154, pp. 209-214. , [Google Scholar] [CrossRef] [PubMed]
dc.relation.referencesRamírez, A.P., Giraldo, S., Flórez, E., Acelas, N., Preparación de carbón activado a partir de residuos de palma de aceite y su aplicación para la remoción de colorantes Preparation of activated carbon from palm oil wastes and their application for methylene blue removal Abstract Preparação de carvão ativa (2012) Afinidad, 559, pp. 203-210. , [Google Scholar] [CrossRef]
dc.relation.referencesBrunauer, S., Emmett, P.H., Teller, E., Adsorption of Gases in Multimolecular Layers (1938) J. Am. Chem. Soc, 60, pp. 309-319. , [Google Scholar] [CrossRef]
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record