Show simple item record

dc.contributor.authorGiraldo S
dc.contributor.authorRobles I
dc.contributor.authorGodínez L.A
dc.contributor.authorAcelas N
dc.contributor.authorFlórez E.
dc.date.accessioned2022-09-14T14:33:44Z
dc.date.available2022-09-14T14:33:44Z
dc.date.created2021
dc.identifier.issn14203049
dc.identifier.urihttp://hdl.handle.net/11407/7456
dc.descriptionChemical and thermochemical transformations were performed on orange peel to obtain materials that were characterized and further tested to explore their potential as adsorbents for the removal of methylene blue (MB) from aqueous solutions. The results show the high potential of some of these materials for MB adsorption not only due to the surface area of the resulting substrate but also to the chemistry of the corresponding surface functional groups. Fitting of the kinetic as well as the equilibrium experimental data to different models suggests that a variety of interactions are involved in MB adsorption. The overall capacities for these substrates (larger than 192.31 mg g−1) were found to compare well with those reported for activated carbon and other adsorbents of agro-industrial origin. According to these results and complementary with theoretical study using Density Functional Theory (DFT) approximations, it was found that the most important adsorption mechanisms of MB correspond to: (i) electrostatic interactions, (ii) H-bonding, and (iii) π (MB)–π (biochar) interactions. In view of these findings, it can be concluded that adsorbent materials obtained from orange peel, constitute a good alternative for the removal of MB dye from aqueous solutions. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85111729643&doi=10.3390%2fmolecules26154555&partnerID=40&md5=76ec71145e0e9973274a6669187c38fd
dc.sourceMolecules
dc.titleExperimental and theoretical insights on methylene blue removal from wastewater using an adsorbent obtained from the residues of the orange industry
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.3390/molecules26154555
dc.subject.keywordAdsorptioneng
dc.subject.keywordAdsorption mechanismeng
dc.subject.keywordDFTeng
dc.subject.keywordDyeseng
dc.subject.keywordOrange peeleng
dc.relation.citationvolume26
dc.relation.citationissue15
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationGiraldo, S., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationRobles, I., Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, Querétaro, 76703, Mexico
dc.affiliationGodínez, L.A., Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, Querétaro, 76703, Mexico
dc.affiliationAcelas, N., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.relation.referencesFan, S., Wang, Y., Wang, Z., Tang, J., Tang, J., Li, X., Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism (2017) J. Environ. Chem. Eng, 5, pp. 601-611. , [CrossRef]
dc.relation.referencesQian, W., Luo, X., Wang, X., Guo, M., Li, B., Ecotoxicology and Environmental Safety Removal of methylene blue from aqueous solution by modi fi ed bamboo hydrochar (2018) Ecotoxicol. Environ. Saf, 157, pp. 300-306. , [CrossRef] [PubMed]
dc.relation.referencesFu, J., Xu, Z., Li, Q.-S., Chen, S., An, S.-Q., Zeng, Q.-F., Zhu, H.-L., Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite (2010) J. Environ. Sci, 22, pp. 512-518. , [CrossRef]
dc.relation.referencesFan, S., Tang, J., Wang, Y., Li, H., Zhang, H., Tang, J., Wang, Z., Li, X., Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism (2016) J. Mol. Liq, 220, pp. 432-441. , [CrossRef]
dc.relation.referencesHuan, Y., Acrylic acid grafted-multi-walled carbon nanotubes and their high-efficiency adsorption of methylene blue (2019) J. Mater. Sci, , [CrossRef]
dc.relation.referencesNguyen, C.H., Fu, C.C., Juang, R.S., Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways (2018) J. Clean. Prod, 202, pp. 413-427. , [CrossRef]
dc.relation.referencesAli, S.A., Yaagoob, I.Y., Mazumder, M.A.J., Al-Muallem, H.A., Fast removal of methylene blue and Hg(II) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid (2019) J. Hazard. Mater, 369, pp. 642-654. , [CrossRef]
dc.relation.referencesYang, Z., Chai, Y., Zeng, L., Gao, Z., Zhang, J., Ji, H., Effcient removal of copper ion from waste water using a stable chitosan gel material (2019) Molecules, 24, p. 4205. , [CrossRef]
dc.relation.referencesGiraldo, S., Ramirez, A.P., Ulloa, M., Flórez, E., Acelas, N.Y., Dyes removal from water using low cost absorbents (2017) J. Phys. Conf. Ser, 935. , [CrossRef]
dc.relation.referencesSiddiqui, S.I., Zohra, F., Chaudhry, S.A., Nigella sativa seed based nanohybrid composite-Fe2 O3 –SnO2 / BC: A novel material for enhanced adsorptive removal of methylene blue from water (2019) Environ. Res, 178, p. 108667. , [CrossRef]
dc.relation.referencesRamírez Muñoz, A.P., Giraldo, S., Flórez Yepes, E., Acelas Soto, N.Y., Preparación de carbón activado a partir de residuos de palma de aceite y su aplicación para la remoción de colorantes (2017) Rev. Colomb. Química, 46, pp. 33-41. , [CrossRef]
dc.relation.referencesBenitez Monsalve, N., Con Cáscaras de Naranja, Quieren Mejorar la Industria y el Ambiente Colombiano, , https://www.laopinion.com.co/economia/con-cascaras-de-naranja-quieren-mejorar-la-industria-y-el-ambiente-colombiano-108367#OP, (accessed on 17 June 2021)
dc.relation.referencesKebaili, M., Djellali, S., Radjai, M., Drouiche, N., Lounici, H., Valorization of orange industry residues to form a natural coagulant and adsorbent (2018) J. Ind. Eng. Chem, 64, pp. 292-299. , [CrossRef]
dc.relation.referencesAhmadpour, A., Zabihi, M., Bastami, T.R., Tahmasbi, M., Ayati, A., Rapid removal of mercury ion (II) from aqueous solution by chemically activated eggplant hull adsorbent (2016) J. Appl. Res. Water Wastewater, 6, pp. 236-240
dc.relation.referencesAhmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E., Ok, Y.S., Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water (2012) Bioresour. Technol, 118, pp. 536-544. , [CrossRef]
dc.relation.referencesGiraldo, S., Robles, I., Ramirez, A., Flórez, E., Acelas, N., Mercury removal from wastewater using agroindustrial waste adsorbents (2020) SN Appl. Sci, 2, p. 1029. , [CrossRef]
dc.relation.referencesDanish, M., Hashim, R., Ibrahim, M.N.M., Sulaiman, O., Effect of acidic activating agents on surface area and surface functional groups of activated carbons produced from Acacia mangium wood (2013) J. Anal. Appl. Pyrolysis, 104, pp. 418-425. , [CrossRef]
dc.relation.referencesKhalfaoui, A., Bendjamaa, I., Bensid, T., Meniai, A.H., Derba, K., Effect of calcination on orange peels characteristics: Application of an industrial dye adsorption (2014) Chem. Eng. Trans, 38, pp. 361-366. , [CrossRef]
dc.relation.referencesBoumediene, M., Benaïssa, H., George, B., Molina, S., Merlin, A., Characterization of two cellulosic waste materials (orange and almond peels) and their use for the removal of methylene blue from aqueous solutions (2015) Maderas. Cienc. Tecnol, 17, pp. 69-84. , [CrossRef]
dc.relation.referencesAndreas, A., Reinaldo, J., Tertira, K., A Study on The Adsorption Equilibrium and Kinetics of Methylene Blue onto Orange Peel Wastes as Biosorbents Proceedings of the 2016 2nd International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE), pp. 59-62. , Yogyakarta, Indonesia, 6–7 October 2016
dc.relation.referencesSalman, T.A., Ali, M.I., Potential Application of Natural and Modified Orange Peel as an Eco-friendly Adsorbent for Methylene Blue Dye (2016) Iraqi J. Sci, 57, pp. 1-13
dc.relation.referencesFernandez, M.E., Nunell, G.V., Bonelli, P.R., Cukierman, A.L., Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes (2014) Ind. Crop. Prod. J, 62, pp. 437-445. , [CrossRef]
dc.relation.referencesAmin, M.T., Alazba, A.A., Shafiq, M., Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions (2019) Environ. Monit. Assess, 191, p. 735. , [CrossRef] [PubMed]
dc.relation.referencesBediako, J.K., Lin, S., Sarkar, A.K., Zhao, Y., Choi, J., Song, M., Cho, C., Yun, Y., Evaluation of orange peel-derived activated carbons for treatment of dye-contaminated wastewater tailings (2020) Environ. Sci. Pollut. Res, 27, pp. 1053-1068. , [CrossRef] [PubMed]
dc.relation.referencesSantoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D.O., Prasetyoko, D., Review on recent advances of carbon based adsorbent for methylene blue removal from waste water (2020) Mater. Today Chem, 16, p. 100233. , [CrossRef]
dc.relation.referencesFranca, A.S., Oliveira, L.S., Ferreira, M.E., Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds (2009) Desalination, 249, pp. 267-272. , [CrossRef]
dc.relation.referencesAgarwal, S., Tyagi, I., Kumar, V., Ghasemi, N., Shahivand, M., Ghasemi, M., Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride (2016) J. Mol. Liq, 218, pp. 208-218. , [CrossRef]
dc.relation.referencesAchour, Y., Khouili, M., Abderrafia, H., Melliani, S., Laamari, M.R., El Haddad, M., DFT Investigations and Experimental Studies for Competitive and Adsorptive Removal of Two Cationic Dyes onto an Eco-friendly Material from Aqueous Media (2018) Int. J. Environ. Res, 12, pp. 789-802. , [CrossRef]
dc.relation.referencesSellaoui, L., Franco, D., Ghalla, H., Georgin, J., Netto, M.S., Luiz Dotto, G., Bonilla-Petriciolet, A., Bajahzar, A., Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: Experiments, phenomenological modelling and DFT calculations (2020) Chem. Eng. J, 394, p. 125011. , [CrossRef]
dc.relation.referencesTovar, A.K., Godínez, L.A., Espejel, F., Ramírez-Zamora, R.-M., Robles, I., Optimization of the integral valorization process for orange peel waste using a design of experiments approach: Production of high-quality pectin and activated carbon (2019) Waste Manag, 85, pp. 202-213. , [CrossRef] [PubMed]
dc.relation.referencesBakatula, E.N., Richard, D., Neculita, C.M., Zagury, G.J., Determination of point of zero charge of natural organic materials (2018) Environ. Sci. Pollut. Res, 25, pp. 7823-7833. , [CrossRef]
dc.relation.referencesGoertzen, S.L., Thériault, K.D., Oickle, A.M., Tarasuk, A.C., Andreas, H.A., Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination (2010) Carbon N. Y, 48, pp. 1252-1261. , [CrossRef]
dc.relation.referencesRamirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations (2020) J. Environ. Chem. Eng, 8, p. 103702. , [CrossRef]
dc.relation.referencesIsah, U.A., Abdulraheem, G., Bala, S., Muhammad, S., Abdullahi, M., Kinetics, equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon (2015) Int. Biodeterior. Biodegradation, 102, pp. 265-273. , [CrossRef]
dc.relation.referencesAcelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119, pp. 1353-1360. , [CrossRef] [PubMed]
dc.relation.referencesTareq, R., Akter, N., Azam, S., Chapter 10—Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remedia-tion (2019) Biochar Biomass Waste, pp. 169-210. , [CrossRef]
dc.relation.referencesFreundlich, H., Über die adsorption in lösungen (1907) Z. Phys. Chem, 57, pp. 385-470. , [CrossRef]
dc.relation.referencesLangmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) J. Am. Chem. Soc, 40, pp. 1361-1403. , [CrossRef]
dc.relation.referencesTemkin, M.J., Pyzhev, V., Recent modifications to Langmuir isotherms (1940) Acta Physicochim. URSS, 12, pp. 217-222
dc.relation.referencesFoo, K.Y., Hameed, B.H., Insights into the modeling of adsorption isotherm systems (2010) Chem. Eng. J, 156, pp. 2-10. , [CrossRef]
dc.relation.referencesFrisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Nakatsuji, H., (2009) Gaussian 09, , Revision A.02
dc.relation.referencesUniversity of Cincinnati Libraries: Wallingford, CT, USA
dc.relation.referencesKeith, T.A., Frisch, M.J., Inclusion of Explicit Solvent Molecules in a Self-Consistent-Reaction Field Model of Solvation (1994) Modeling the Hydrogen Bond
dc.relation.referencesACS Symposium Series, 569, pp. 22-35. , American Chemical Society: Washington, DC, USA, ISBN 9780841229815
dc.relation.referencesLi, Z., Hanafy, H., Zhang, L., Sellaoui, L., Schadeck, M., Oliveira, M.L.S., Seliem, M.K., Bonilla-petriciolet, A., Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations (2020) Chem. Eng. J, 388, p. 124263. , [CrossRef]
dc.relation.referencesShakoor, S., Nasar, A., Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent (2016) J. Taiwan Inst. Chem. Eng, 66, pp. 154-163. , [CrossRef]
dc.relation.referencesGayathri, K., Palanisamy, N., Methylene blue adsorption onto an eco-friendly modified polyacrylamide/graphite composites: Investigation of kinetics, equilibrium, and thermodynamic studies (2020) Sep. Sci. Technol, 55, pp. 1-12. , [CrossRef]
dc.relation.referencesThi, H.T., Le, A.H., Huu, T.P., Dinhd, T.N., Chang, S.W., Chung, W.J., Nguyen, D.D., Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste (2020) Sci. Total Environ, 725, p. 138325. , [CrossRef]
dc.relation.referencesGuimarães Gusmão, K.A., Alves Gurgel, L.V., Sacramento Melo, T.M., Frédéric Gil, L., Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: Kinetic and equilibrium aspects (2013) J. Environ. Manag, 118, pp. 135-143. , [CrossRef] [PubMed]
dc.relation.referencesSalazar-rabago, J.J., Leyva-ramos, R., Rivera-utrilla, J., Ocampo-perez, R., Cerino-cordova, F.J., Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: Effect of operating conditions (2017) Sustain. Environ. Res, 27, pp. 32-40. , [CrossRef]
dc.relation.referencesRodrigues Sousa, H., Santos Silva, L., Abreu Sousa, P.A., Magalhães Sousa, R.R., Gardênnia Fonseca, M., Anteveli Osajima, J., Silva-Filho, E.C., Evaluation of methylene blue removal by plasma activated palygorskites (2019) J. Mater. Res. Technol, 8, pp. 5432-5442. , [CrossRef]
dc.relation.referencesBoumediene, M., Benaïssa, H., George, B., Molina, S., Merlin, A., Effects of pH and ionic strength on methylene blue removal from synthetic aqueous solutions by sorption onto orange peel and desorption study (2018) J. Mater. Environ. Sci, 9, pp. 1700-1711. , [CrossRef]
dc.relation.referencesGuediri, A., Bouguettoucha, A., Chebli, D., Chafai, N., Amrane, A., Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modified phosphoric acid (2020) J. Mol. Struct. J, 1202, pp. 1-14. , [CrossRef]
dc.relation.referencesZhang, X., Fu, W., Yin, Y., Chen, Z., Qiu, R., Simonnot, M.-O., Wang, X., Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies (2018) Bioresour. Technol, 268, pp. 149-157. , [CrossRef]
dc.relation.referencesNguyen, H., You, S., Hosseini-bandegharaei, A., Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review (2017) Water Res, 120, pp. 88-116. , [CrossRef]
dc.relation.referencesLi, B., Lv, J., Guo, J., Fu, S., Guo, M., Yang, P., The polyaminocarboxylated modifed hydrochar for efficient capturing methylene blue and Cu (II) from water (2019) Bioresour. Technol, 275, pp. 360-367. , [CrossRef]
dc.relation.referencesWu, Z., Zhong, H., Yuan, X., Wang, H., Wang, L., Chen, X., Zeng, G., Wu, Y., Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater (2014) Water Res, 67, pp. 330-344. , [CrossRef] [PubMed]
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record