Mostrar el registro sencillo del ítem

dc.contributor.authorLeiva M.J
dc.contributor.authorParra N.C
dc.contributor.authorContreras M.A
dc.contributor.authorTavares K.C.S
dc.contributor.authorMacaya L
dc.contributor.authorMartins L
dc.contributor.authorGaudencio S
dc.contributor.authorHidalgo Á
dc.contributor.authorKozak R.P
dc.contributor.authorGonzález A
dc.contributor.authorSánchez O
dc.contributor.authorToledo J.R
dc.contributor.authorMontesino R.
dc.date.accessioned2022-09-14T14:33:44Z
dc.date.available2022-09-14T14:33:44Z
dc.date.created2021
dc.identifier.issn1681656
dc.identifier.urihttp://hdl.handle.net/11407/7459
dc.descriptionVascular endothelial growth factor (VEGF) has essential functions in angiogenesis, endothelial cell proliferation, migration, and tumor invasion. Different approaches have been developed to suppress tumor angiogenesis, which is considered a hallmark of cancer. Anti-VEGF monoclonal antibodies constitute an important strategy for cancer immunotherapy, which has been produced on several platforms. In this study, a novel single-chain anti-VEGF monoclonal antibody (scVEGFmAb) was produced in the goat mammary gland by adenoviral transduction. scVEGFmAb was purified by affinity chromatography. N-glycans were analyzed by exoglycosidase digestion and hydrophilic interaction ultra-performance liquid chromatography coupled to electrospray ionization mass spectrometry. The biological activity of scVEGFmAb was assessed by scratch and mouse aortic ring assays. scVEGFmAb was produced at 0.61 g/L in the goat milk, and its purification rendered 95 % purity. N-glycans attached to scVEGFmAb backbone were mainly neutral biantennary core fucosylated with Galβ1,4GlcNAc motif, and charged structures were capped with Neu5Ac and Neu5Gc. The chimeric molecule significantly prevented cell migration and suppressed microvessel sprouting. These results demonstrated for the first time the feasibility of producing an anti-VEGF therapeutic antibody in the milk of non-transgenic goats with the potential to counteract tumor angiogenesis. © 2021 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85110170549&doi=10.1016%2fj.jbiotec.2021.06.025&partnerID=40&md5=81936b622de74abfa97582ffc944a9ae
dc.sourceJournal of Biotechnology
dc.titleExpression and characterization of a novel single-chain anti-vascular endothelial growth factor antibody in the goat milk
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.jbiotec.2021.06.025
dc.subject.keywordAdenoviral transductioneng
dc.subject.keywordAngiogenesiseng
dc.subject.keywordCancereng
dc.subject.keywordMammary glandeng
dc.subject.keywordN-glycanseng
dc.subject.keywordVascular endothelial growth factoreng
dc.subject.keywordBioactivityeng
dc.subject.keywordCell cultureeng
dc.subject.keywordCell engineeringeng
dc.subject.keywordCell proliferationeng
dc.subject.keywordDiseaseseng
dc.subject.keywordElectrospray ionizationeng
dc.subject.keywordEndothelial cellseng
dc.subject.keywordHydrophilicityeng
dc.subject.keywordLiquid chromatographyeng
dc.subject.keywordMass spectrometryeng
dc.subject.keywordPolysaccharideseng
dc.subject.keywordPurificationeng
dc.subject.keywordTumorseng
dc.subject.keywordAdenoviral transductioneng
dc.subject.keywordAngiogenesiseng
dc.subject.keywordAnti-vascular endothelial growth factorseng
dc.subject.keywordEndothelial cell proliferationeng
dc.subject.keywordGoat's milkeng
dc.subject.keywordMammary glandeng
dc.subject.keywordN-glycaneng
dc.subject.keywordSingle chainseng
dc.subject.keywordTumor angiogenesiseng
dc.subject.keywordVascular endothelial growth factoreng
dc.subject.keywordMonoclonal antibodieseng
dc.relation.citationvolume338
dc.relation.citationstartpage52
dc.relation.citationendpage62
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationLeiva, M.J., Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
dc.affiliationParra, N.C., Recombinant Biopharmaceuticals Laboratory, Department of Pharmacology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
dc.affiliationContreras, M.A., Recombinant Biopharmaceuticals Laboratory, Department of Pharmacology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
dc.affiliationTavares, K.C.S., Molecular and Developmental Biology Lab, Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, CE, Brazil
dc.affiliationMacaya, L., Recombinant Biopharmaceuticals Laboratory, Department of Pharmacology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
dc.affiliationMartins, L., Molecular and Developmental Biology Lab, Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, CE, Brazil
dc.affiliationGaudencio, S., Molecular and Developmental Biology Lab, Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, CE, Brazil
dc.affiliationHidalgo, Á., Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
dc.affiliationKozak, R.P., Ludger Ltd, Culham Science Centre, Oxfordshire, United Kingdom
dc.affiliationGonzález, A., Recombinant Biopharmaceuticals Laboratory, Department of Pharmacology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile, Faculty of Basic Sciences, University of Medellin, Cra. 87 Nº 30-65, Medellin, Antioquia, Colombia
dc.affiliationSánchez, O., Recombinant Biopharmaceuticals Laboratory, Department of Pharmacology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
dc.affiliationToledo, J.R., Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
dc.affiliationMontesino, R., Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
dc.relation.referencesAhmad, Z.A., Yeap, S.K., Ali, A.M., Ho, W.Y., Alitheen, N.B., Hamid, M., scFv antibody: principles and clinical application (2012) Clin. Dev. Immunol., 2012
dc.relation.referencesAlevizakos, M., Kaltsas, S., Syrigos, K.N., The VEGF pathway in lung cancer (2013) Cancer Chemother. Pharmacol., 72, pp. 1169-1181
dc.relation.referencesAmro, W.A., Al-Qaisi, W., Al-Razem, F., Production and purification of IgY antibodies from chicken egg yolk (2018) J. Genet. Eng. Biotechnol., 16, pp. 99-103
dc.relation.referencesApte, R.S., Chen, D.S., Ferrara, N., VEGF in signaling and disease: beyond discovery and development (2019) Cell, 176, pp. 1248-1264
dc.relation.referencesBaker, M., Robinson, S.D., Lechertier, T., Barber, P.R., Tavora, B., D'Amico, G., Jones, D.T., K.H.-D, Use of the mouse aortic ring assay to study angiogenesis (2012) Nat. Protoc., 7, pp. 89-104
dc.relation.referencesBendardaf, R., El-Serafi, A., Syrjanen, K., Collan, Y., Pyrhonen, S., The effect of vascular endothelial growth factor-1 expression on survival of advanced colorectal cancer patients (2017) Libyan J. Med., 12
dc.relation.referencesBertolini, L.R., Meade, H., Lazzarotto, C.R., Martins, L.T., Tavares, K.C., Bertolini, M., Murray, J.D., The transgenic animal platform for biopharmaceutical production (2016) Transgenic Res., 25, pp. 329-343
dc.relation.referencesBuyel, J.F., Twyman, R.M., Fischer, R., Very-large-scale production of antibodies in plants: the biologization of manufacturing (2017) Biotechnol. Adv., 35, pp. 458-465
dc.relation.referencesCheng, C.M., Tzou, S.C., Zhuang, Y.H., Huang, C.C., Kao, C.H., Liao, K.W., Cheng, T.C., Cheng, T.L., Functional production of a soluble and secreted single-chain antibody by a bacterial secretion system (2014) PLoS One, 9
dc.relation.referencesDyck, M.K., Lacroix, D., Pothier, F., Sirard, M.A., Making recombinant proteins in animals—different systems, different applications (2003) Trends Biotechnol., 21, pp. 394-399
dc.relation.referencesFerrara, N., Molecular and biological properties of vascular endothelial growth factor (1999) J. Mol. Med. (Berl.)., 77, pp. 527-543
dc.relation.referencesFerrara, N., VEGF and the quest for tumour angiogenesis factors (2002) Nat. Rev. Cancer, 2, pp. 795-803
dc.relation.referencesFerrara, N., Hillan, K.J., Gerber, H.P., Novotny, W., Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer (2004) Nat. Rev. Drug Discov., 3, pp. 391-400
dc.relation.referencesGaillet, B., Gilbert, R., Amziani, R., Guilbault, C., Gadoury, C., Caron, A.W., Mullick, A., Massie, B., High-level recombinant protein production in CHO cells using an adenoviral vector and the cumate gene-switch (2007) Biotechnol. Prog., 23, pp. 200-209
dc.relation.referencesHanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation (2011) Cell, 144, pp. 646-674
dc.relation.referencesHarvey, D.J., Merry, A.H., Royle, L., Campbell, M.P., Dwek, R.A., Rudd, P.M., Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds (2009) Proteomics, 9, pp. 3796-3801
dc.relation.referencesHigel, F., Seidl, A., Sorgel, F., Friess, W., N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins (2016) Eur. J. Pharm. Biopharm., 100, pp. 94-100
dc.relation.referencesHosseinzadeh, F., Mohammadi, S., Nejatollahi, F., Production and evaluation of specific single-chain antibodies against CTLA-4 for cancer-targeted therapy (2017) Rep. Biochem. Mol. Biol., 6, pp. 8-14
dc.relation.referencesHoudebine, L.M., Animal transgenesis: recent data and perspectives (2002) Biochimie, 84, pp. 1137-1141
dc.relation.referencesHoudebine, L.M., Production of pharmaceutical proteins by transgenic animals (2018) Rev Sci Tech., 37, pp. 131-139
dc.relation.referencesHurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Kabbinavar, F., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer (2004) N. Engl. J. Med., 350, pp. 2335-2342
dc.relation.referencesKesik-Brodacka, M., Progress in biopharmaceutical development (2018) Biotechnol. Appl. Biochem., 65, pp. 306-322
dc.relation.referencesKlutz, S., Magnus, J., Lobedann, M., Schwan, P., Maiser, B., Niklas, J., Temming, M., Schembecker, G., Developing the biofacility of the future based on continuous processing and single-use technology (2015) J. Biotechnol., 213, pp. 120-130
dc.relation.referencesKovesdi, I., Brough, D.E., Bruder, J.T., Wickham, T.J., Adenoviral vectors for gene transfer (1997) Curr. Opin. Biotechnol., 8, pp. 583-589
dc.relation.referencesKozak, R.P., Tortosa, C.B., Fernandes, D.L., Spencer, D.I., Comparison of procainamide and 2-aminobenzamide labeling for profiling and identification of glycans by liquid chromatography with fluorescence detection coupled to electrospray ionization-mass spectrometry (2015) Anal. Biochem., 486, pp. 38-40
dc.relation.referencesKunert, R., Reinhart, D., Advances in recombinant antibody manufacturing (2016) Appl. Microbiol. Biotechnol., 100, pp. 3451-3461
dc.relation.referencesLaemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
dc.relation.referencesLai, Y.D., Wu, Y.Y., Tsai, Y.J., Tsai, Y.S., Lin, Y.Y., Lai, S.L., Huang, C.Y., Lai, J.S., Generation of potent anti-vascular endothelial growth factor neutralizing antibodies from mouse phage display library for cancer therapy (2016) Int. J. Mol. Sci., 17, p. 214
dc.relation.referencesLaible, G., Cole, S., Brophy, B., Maclean, P., Chen, L.H., Pollock, D.P., Cavacini, L., Meade, H.M., Transgenic goats producing an improved version of cetuximab in milk (2020) bioRxiv.
dc.relation.referencesLeiva-Carrasco, M.J., Jimenez-Chavez, S., Harvey, D.J., Parra, N.C., Tavares, K.C., Camacho, F., Gonzalez, A., Toledo, J.R., In vivo modification of the goat mammary gland glycosylation pathway (2021) N. Biotechnol., 61, pp. 11-21
dc.relation.referencesLeung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V., Ferrara, N., Vascular endothelial growth factor is a secreted angiogenic mitogen (1989) Science, 246, pp. 1306-1309
dc.relation.referencesLimonta, J., Pedraza, A., Rodriguez, A., Freyre, F.M., Barral, A.M., Castro, F.O., Lleonart, R., de la Fuente, J., Production of active anti-CD6 mouse/human chimeric antibodies in the milk of transgenic mice (1995) Immunotechnology., 1, pp. 107-113
dc.relation.referencesLoftis, A.R., Santos, M.S., Truex, N.L., Biancucci, M., Satchell, K.J.F., Pentelute, B.L., Anthrax protective antigen retargeted with single-chain variable fragments delivers enzymes to pancreatic cancer cells (2020) Chembiochem., 21, pp. 2772-2776
dc.relation.referencesLu, R.M., Hwang, Y.C., Liu, I.J., Lee, C.C., Tsai, H.Z., Li, H.J., Wu, H.C., Development of therapeutic antibodies for the treatment of diseases (2020) J. Biomed. Sci., 27, p. 1
dc.relation.referencesMacher, B.A., Galili, U., The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance (2008) Biochim. Biophys. Acta, 1780, pp. 75-88
dc.relation.referencesMaj, E., Papiernik, D., Wietrzyk, J., Antiangiogenic cancer treatment: the great discovery and greater complexity (Review) (2016) Int. J. Oncol., 49, pp. 1773-1784
dc.relation.referencesMaksimenko, O.G., Deykin, A.V., Khodarovich, Y.M., Georgiev, P.G., Use of transgenic animals in biotechnology: prospects and problems (2013) Acta Naturae, 5, pp. 33-46
dc.relation.referencesMoazen, B., Ebrahimi, E., Nejatollahi, F., Single chain antibodies against gp55 of human cytomegalovirus (HCMV) for prophylaxis and treatment of HCMV infections (2016) Jundishapur J. Microbiol., 9
dc.relation.referencesMontesino, R., Toledo, J.R., Sanchez, O., Sanchez, A., Harvey, D.J., Royle, L., Dwek, R.A., Cremata, J.A., Monosialylated biantennary N-glycoforms containing GalNAc-GlcNAc antennae predominate when human EPO is expressed in goat milk (2008) Arch. Biochem. Biophys., 470, pp. 163-175
dc.relation.referencesMontesino, R., Toledo, J.R., Sanchez, O., Zamora, Y., Barrera, M., Royle, L., Rudd, P.M., Cremata, J.A., N-glycosylation pattern of E2 glycoprotein from classical swine fever virus (2009) J. Proteome Res., 8, pp. 546-555
dc.relation.referencesNejatollahi, F., Abdi, S., Asgharpour, M., Antiproliferative and apoptotic effects of a specific antiprostate stem cell single chain antibody on human prostate cancer cells (2013) J. Oncol., 2013
dc.relation.referencesNejatollahi, F., Jaberipour, M., Asgharpour, M., Triple blockade of HER2 by a cocktail of anti-HER2 scFv antibodies induces high antiproliferative effects in breast cancer cells (2014) Tumour Biol., 35, pp. 7887-7895
dc.relation.referencesNewton, D.L., Pollock, D., DiTullio, P., Echelard, Y., Harvey, M., Wilburn, B., Williams, J., Rybak, S.M., Antitransferrin receptor antibody-RNase fusion protein expressed in the mammary gland of transgenic mice (1999) J. Immunol. Methods, 231, pp. 159-167
dc.relation.referencesPollock, D.P., Kutzko, J.P., Birck-Wilson, E., Williams, J.L., Echelard, Y., Meade, H.M., Transgenic milk as a method for the production of recombinant antibodies (1999) J. Immunol. Methods, 231, pp. 147-157
dc.relation.referencesPuddu, A., Sanguineti, R., Traverso, C.E., Viviani, G.L., Nicolo, M., Response to anti-VEGF-A treatment of endothelial cells in vitro (2016) Exp. Eye Res., 146, pp. 128-136
dc.relation.referencesRodriguez, E.S., Pose, A.G., Molto, M.P., Espinoza, A.S., Zamora, P.A., Pedroso, M.S., Biosafety evaluation of recombinant protein production in goat mammary gland using adenoviral vectors: preliminary study (2012) Biotechnol. J., 7, pp. 1049-1053
dc.relation.referencesRosen, L., Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers (2002) Cancer control: J. Moffitt Cancer Center, 9, pp. 36-44
dc.relation.referencesRoyle, L., Mattu, T.S., Hart, E., Langridge, J.I., Merry, A.H., Murphy, N., Harvey, D.J., Rudd, P.M., An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins (2002) Anal. Biochem., 304, pp. 70-90
dc.relation.referencesRoyle, L., Radcliffe, C.M., Dwek, R.A., Rudd, P.M., Detailed structural analysis of N-glycans released from glycoproteins in SDS-PAGE gel bands using HPLC combined with exoglycosidase array digestions (2006) Methods Mol. Biol., 347, pp. 125-143
dc.relation.referencesSalgado, E.R., Montesino, R., Jimenez, S.P., Gonzalez, M., Hugues, F., Cabezas, O.I., Maura-Perez, R., Toledo, J.R., Post-translational modification of a chimeric EPO-Fc hormone is more important than its molecular size in defining its in vivo hematopoietic activity (2015) Biochim. Biophys. Acta, 1850, pp. 1685-1693
dc.relation.referencesSanchez, O., Toledo, J.R., Rodriguez, M.P., Castro, F.O., Adenoviral vector mediates high expression levels of human growth hormone in the milk of mice and goats (2004) J. Biotechnol., 114, pp. 89-97
dc.relation.referencesShan, L., Colazet, M., Rosenthal, K.L., Yu, X.Q., Bee, J.S., Ferguson, A., Damschroder, M.M., Oganesyan, V., Generation and characterization of an IgG4 monomeric fc platform (2016) PLoS One, 11
dc.relation.referencesSharma, G.K., Mahajan, S., Matura, R., Subramaniam, S., Mohapatra, J.K., Pattnaik, B., Production and characterization of single-chain antibody (scFv) against 3ABC non-structural protein in Escherichia coli for sero-diagnosis of foot and mouth disease virus (2014) Biologicals., 42, pp. 339-345
dc.relation.referencesSpadiut, O., Capone, S., Krainer, F., Glieder, A., Herwig, C., Microbials for the production of monoclonal antibodies and antibody fragments (2014) Trends Biotechnol., 32, pp. 54-60
dc.relation.referencesToledo, J.R., Sanchez, O., Segui, R.M., Garcia, G., Montanez, M., Zamora, P.A., Rodriguez, M.P., Cremata, J.A., High expression level of recombinant human erythropoietin in the milk of non-transgenic goats (2006) J. Biotechnol., 123, pp. 225-235
dc.relation.referencesToledo, J.R., Sanchez, O., Montesino, R., Farnos, O., Rodriguez, M.P., Alfonso, P., Oramas, N., Barrera, M., Highly protective E2-CSFV vaccine candidate produced in the mammary gland of adenoviral transduced goats (2008) J. Biotechnol., 133, pp. 370-376
dc.relation.referencesUS_FDA, FDA Approves Additional Treatment for Adults and Adolescents with Hemophilia a or B and Inhibitors (2020)
dc.relation.referencesVachhani, P., George, S., VEGF inhibitors in renal cell carcinoma (2016) Clin. Adv. Hematol. Oncol., 14, pp. 1016-1028
dc.relation.referencesWeiner, L.M., Dhodapkar, M.V., Ferrone, S., Monoclonal antibodies for cancer immunotherapy (2009) Lancet, 373, pp. 1033-1040
dc.relation.referencesYang, Y., Nunes, F.A., Berencsi, K., Furth, E.E., Gonczol, E., Wilson, J.M., Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 4407-4411
dc.relation.referencesYoshida, Y., Naito, M., Yamada, T., Aisu, N., Kojima, D., Mera, T., Tanaka, T., Hasegawa, S., Clinical study on the medical value of combination therapy involving adoptive immunotherapy and chemotherapy for stage IV colorectal cancer (COMVI study) (2017) Anticancer Res., 37, pp. 3941-3946
dc.relation.referencesYounesi, V., Nejatollahi, F., Induction of anti-proliferative and apoptotic effects by anti-IL-25 receptor single chain antibodies in breast cancer cells (2014) Int. Immunopharmacol., 23, pp. 624-632
dc.relation.referencesZhang, R., Cui, D., Wang, H., Li, C., Yao, X., Zhao, Y., Liang, M., Li, N., Functional recombinant human anti-HBV antibody expressed in milk of transgenic mice (2012) Transgenic Res., 21, pp. 1085-1091
dc.relation.referencesZhang, R., Tang, C., Guo, H., Tang, B., Hou, S., Zhao, L., Wang, J., Li, N., A novel glycosylated anti-CD20 monoclonal antibody from transgenic cattle (2018) Sci. Rep., 8, p. 13208
dc.relation.referencesZhao, Y., Adjei, A.A., Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor (2015) Oncologist, 20, pp. 660-673
dc.relation.referencesZou, J., Chen, S., Li, Y., Zeng, L., Lian, G., Li, J., Chen, S., Chen, Y., Nanoparticles modified by triple single chain antibodies for MRI examination and targeted therapy in pancreatic cancer (2020) Nanoscale, 12, pp. 4473-4490
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem