Show simple item record

dc.contributor.authorRodríguez-Grau G
dc.contributor.authorMarín-Uribe C.R
dc.contributor.authorGarcía-Giraldo J.M
dc.contributor.authorEstay C.
dc.date.accessioned2022-09-14T14:33:46Z
dc.date.available2022-09-14T14:33:46Z
dc.date.created2021
dc.identifier.issn17480272
dc.identifier.urihttp://hdl.handle.net/11407/7465
dc.descriptionSawn timber is marketed in limited length, so larger construction sizes require structural joining solutions for discrete elements. Traditional carpentry joints allow wood elements to be joined in a sustainable way, as they may not require adhesives or metal implements, such as nails or plates. In this research, the mechanical behaviour during the bending of four different oblique splices, made of radiata pine, has been studied. The results obtained show that the vertical oblique rabbetted splice (ROVS) had the best bending performance, with a strength of 43% compared to the solid control specimen (C), followed by the metal splice (MC) with a strength of 34%. The other splices studied, Rabbeted Oblique Scarf Splice (ROSS), Mortised Rabbeted Oblique Splice (MROS), and Oblique Splice Diamont (OSDP) showed flexural strengths of less than 25%, compared to the control specimen (C). The failure observed in the tested joints corresponds to a characteristic flexural and shear failure, where the predominant cracks retained the same direction generated by the discontinuity of the joints and were located in the central zone of the specimen, where the flexural and shear stresses are at a maximum. © 2021 Informa UK Limited, trading as Taylor & Francis Group.eng
dc.language.isoeng
dc.publisherTaylor and Francis Ltd.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85118581983&doi=10.1080%2f17480272.2021.1990405&partnerID=40&md5=d04c3b32919ed66a1f1c7709aab5282a
dc.sourceWood Material Science and Engineering
dc.titleFlexural strength characterisation of oblique radiata pine splice joints
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civil
dc.type.spaArtículo
dc.identifier.doi10.1080/17480272.2021.1990405
dc.subject.keywordCarpenter jointseng
dc.subject.keywordFlexural strengtheng
dc.subject.keywordJapanese joineryeng
dc.subject.keywordJoineryeng
dc.subject.keywordJoint woodeng
dc.subject.keywordAdhesiveseng
dc.subject.keywordForestryeng
dc.subject.keywordShear stresseng
dc.subject.keywordBending performanceeng
dc.subject.keywordCarpenter jointeng
dc.subject.keywordDiscrete elementseng
dc.subject.keywordJapanese joineryeng
dc.subject.keywordJoineryeng
dc.subject.keywordMechanical behavioreng
dc.subject.keywordRadiata pineeng
dc.subject.keywordSawn timberseng
dc.subject.keywordSolid controleng
dc.subject.keywordStrength characterizationeng
dc.subject.keywordBending strengtheng
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationRodríguez-Grau, G., School of Civil Construction, Faculty of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
dc.affiliationMarín-Uribe, C.R., School of Civil Construction, Faculty of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
dc.affiliationGarcía-Giraldo, J.M., Civil Engineering Department, Faculty of Engineering, University of Medellin, Medellin, Colombia
dc.affiliationEstay, C., School of Civil Construction, Faculty of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
dc.relation.referencesAira, J.R., (2013), Análisis Experimental y por el Método de los Elementos Finitos del Estado de Tensiones en Uniones Carpinteras de Empalme de Llave. Universidad Politécnica de Madrid
dc.relation.referencesAnagnostou, G., (2018), The influence of traditional Japanese timber design and construction techniques on contemporary architecture and its relevance to modern timber construction., Gottstein Fellowship Report, (October), 1–107
dc.relation.references(2019), ASTM A36/A36M-19, Standard Specification for CArbon Structural Steel
dc.relation.referencesBranco, J.M., Descamps, T., Analysis and strengthening of carpentry joints (2015) Construction and Building Materials, 97, pp. 34-47
dc.relation.referencesCabrero, J., Japón, un mundo en donde la madera es sagrada (2013) Navarra Forestal, 33, pp. 34-36
dc.relation.referencesCohen, D., McKay, S., Brock, L., Cole, R., Prion, H., Barrett, D., Wood construction in Japan: past and present (1996) Forest Products Journal, 46 (11-12), pp. 18-24
dc.relation.referencesEl-Houjeyri, I., Thi, V.D., Oudjene, M., Khelifa, M., Rogaume, Y., Sotayo, A., Guan, Z., Experimental investigations on adhesive free laminated oak timber beams and timber-to-timber joints assembled using thermo-mechanically compressed wood dowels (2019) Construction and Building Materials, 222 (2019), pp. 288-299
dc.relation.referencesEsteban, M., Arriaga, F., Íñiguez, G., Bobadilla, I., Mateo, R., The effect of fissures on the strength of structural timber (2010) Materiales de Construccion, 60 (299), pp. 115-132
dc.relation.references(2021) Forest Product, , Rome, Italy: Food and Agriculture Organization of the United Nations
dc.relation.referencesHeesterman, M., Sweet, K., (2018), Robotic Connections: Customisable Joints for Timber Construction. In: 22th conference of the iberoamerican society of digital graphics. 644–652
dc.relation.referencesHermoso, E., Mateo, R., Íñiguez-González, G., Montón, J., Arriaga, F., Visual grading and structural properties assessment of large cross-section pinus radiata D (2016) Don Timber. BioResources, 11 (2), pp. 5312-5321
dc.relation.referencesHill, C.A.S., Dibdiakova, J., The environmental impact of wood compared to other building materials (2016) International Wood Products Journal, 7 (4), pp. 215-219
dc.relation.references(2020) Chilean Statistical Yearbook of Forestry 2020, , Santiago: Chile
dc.relation.references(2020) Elaboración en la Industria del Aserrío en Chile, , Santiago: Chile
dc.relation.references(1986), NCh 987: Wood - Determination of mechanical properties - Static bending test
dc.relation.references(2005), NCh1207 - Pino radiata, Pino oregón, Pino ponderosa - Clasificación visual para uso estructural - Especificaciones de los grados de calidad
dc.relation.references(2014), NCh 1198: Wood - Wood buildings - Calculation and design
dc.relation.referencesJayawickrama, K.J.S., Breeding radiata pine for wood stiffness: review and analysis (2001) Australian Forestry, 64 (1), pp. 51-56
dc.relation.referencesJeong, G.Y., Tensile properties of utgulisanji connection (2020) International Journal of Architectural Heritage, 15 (2), pp. 313-320
dc.relation.referencesKarolak, A., Jasienko, J., Nowak, T., Raszczuk, K., Experimental investigations of timber beams with stop-splayed scarf carpentry joints (2020) Materials, 13 (6), pp. 1-16
dc.relation.referencesKarolak, A., Jasieńko, J., Raszczuk, K., Historical scarf and splice carpentry joints: state of the art (2020) Heritage Science, 8 (1), pp. 1-19
dc.relation.referencesKeenan, F.J., Shear strength of wood beams (1974) Forest Products Journal, 24 (9), pp. 63-70
dc.relation.referencesLanda-Esparza, M., Landa Esparza, M., Nuevas técnicas de reparación de estructuras de madera. Elementos flexionados. aporte de madera -unión encolada II. metodología de puesta en obra (1999) RE: Revista de Edificación, 29, pp. 30-36
dc.relation.referencesLaurent, A., Van der Meer, Y., Villeneuve, C., Comparative life cycle carbon footprint of a Non-residential steel and wooden Building structures (2018) Current Trends Forest Research, 2018 (4), pp. 1-10
dc.relation.referencesLi, H., Lam, F., Qiu, H., Flexural performance of spliced beam connected and reinforced with self-tapping wood screws (2017) Engineering Structures, 152, pp. 523-534
dc.relation.referencesLi, X., Ashraf, M., Subhani, M., Kremer, P., Kafle, B., Ghabraie, K., Experimental and numerical study on bending properties of heterogeneous lamella layups in cross laminated timber using Australian radiata pine (2020) Construction and Building Materials, 247, pp. 1-14
dc.relation.referencesNandanwar, A., Naidu, M.V., Pandey, C.N., Development of test methods for wooden furniture joints (2013) Wood Material Science and Engineering, 8 (3), pp. 188-197
dc.relation.referencesNiklewski, J., Fredriksson, M., The effects of joints on the moisture behaviour of rain exposed wood: a numerical study with experimental validation (2021) Wood Material Science and Engineering, 16 (1), pp. 1-11
dc.relation.referencesParisi, M.A., Cordié, C., Mechanical behavior of double-step timber joints (2010) Construction and Building Materials, 24 (8), pp. 1364-1371
dc.relation.referencesRen, G., Xue, J., Xu, D., Ma, L., Experimental and theoretical analysis on rotation performance of cross-shaped joints with dowel in traditional timber structures (2021) Journal of Building Engineering, 37, pp. 1-13
dc.relation.referencesRoss, P., (2002) Appraisal and Repair of Timber Structures, , London: Thomas teldford Publishing
dc.relation.referencesSaavedra, H., García-Herrera, C., Vasco, D.A., Salinas-Lira, C., Characterization of mechanical performance of Pinus radiata wood impregnated with octadecane as phase change material (2021) Journal of Building Engineering, 34, pp. 1-8
dc.relation.referencesSandberg, D., Kutnar, A., Karlsson, O., Jones, D., (2021) Wood Modification Technologies Principles, Sustainability, and the Need for Innovation, , Boca Raton: CRC Press
dc.relation.referencesSiem, J., The single-step joint–a traditional carpentry joint with new possibilities (2017) International Wood Products Journal, 8, pp. 45-49
dc.relation.references(2010) Timber Structures Part 1 : Design Methods, , Sydney: Australian Standard ®
dc.relation.referencesSumiyoshi, T., Matsui, G., (1989) Wood Joints in Classical Japanese Architecture, , Tokyo: Kajima Institute Publishing Co., Ltd
dc.relation.referencesThelandersson, S., Larsen, H., (2003) Timber Engineering, , Chichester: Wiley
dc.relation.referencesTuhkanen, E., Ojamaa, M., Early experimental investigations on slotted-in steel plate connections with self-perforating dowels in CLT (2021) Wood Material Science and Engineering, 16 (2), pp. 102-109
dc.relation.referencesVergara, E., (2014), https://www.plataformaarquitectura.cl/cl/02-369472/en-detalle-especial-los-ensambles-de-madera-en-la-arquitectura-japonesa-tradicional, En Detalle: Especial / Los ensambles de madera en la arquitectura japonesa tradicional [online]. Available from:, [Accessed 1 Sep 2021]
dc.relation.referencesWei, J., Rao, F., Huang, Y., Zhang, Y., Qi, Y., Yu, W., Hse, C.Y., Structure, mechanical performance, and dimensional stability of radiata pine (Pinus radiata D. Don) scrimbers (2019) Advances in Polymer Technology, 2019, pp. 1-8
dc.relation.referencesYeomans, D., (2003) The Repair of Historic Timber Structures, , London: Thomas Telford
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record