Mostrar el registro sencillo del ítem

dc.contributor.authorSuárez-Barrera M.O
dc.contributor.authorVisser L
dc.contributor.authorRondón-Villarreal P
dc.contributor.authorHerrera-Pineda D.F
dc.contributor.authorAlarcón-Aldana J.S
dc.contributor.authorVan den Berg A
dc.contributor.authorOrozco J
dc.contributor.authorPinzón-Reyes E.H
dc.contributor.authorMoreno E
dc.contributor.authorRueda-Forero N.J.
dc.date.accessioned2022-09-14T14:33:47Z
dc.date.available2022-09-14T14:33:47Z
dc.date.created2021
dc.identifier.issn14203049
dc.identifier.urihttp://hdl.handle.net/11407/7471
dc.descriptionBacillus thuringiensis (Bt) is a bacterium capable of producing Cry toxins, which are recognized for their bio-controlling actions against insects. However, a few Bt strains encode proteins lacking insecticidal activity but showing cytotoxic activity against different cancer cell lines and low or no cytotoxicity toward normal human cells. A subset of Cry anticancer proteins, termed parasporins (PSs), has recently arisen as a potential alternative for cancer treatment. However, the molecular receptors that allow the binding of PSs to cells and their cytotoxic mechanisms of action have not been well established. Nonetheless, their selective cytotoxic activity against different types of cancer cell lines places PSs as a promising alternative treatment modality. In this review, we provide an overview of the classification, structures, mechanisms of action, and insights obtained from genetic modification approaches for PS proteins. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85121542572&doi=10.3390%2fmolecules26247476&partnerID=40&md5=d0ac1512241065ca55dd2d8f6b3ccdad
dc.sourceMolecules
dc.titleGenetic modification approaches for parasporins bacillus thuringiensis proteins with anticancer activity
dc.typeReview
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaRevisión
dc.identifier.doi10.3390/molecules26247476
dc.subject.keywordCancer cellseng
dc.subject.keywordCry toxinseng
dc.subject.keywordGenetic improvementeng
dc.subject.keywordParasporinseng
dc.relation.citationvolume26
dc.relation.citationissue24
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationSuárez-Barrera, M.O., Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga, 680003, Colombia, Corporación de Ciencias Básicas Biomédicas, Universidad de Antioquia, Medellín, 050010, Colombia, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, Netherlands, MaxPlanck Tandem Group in Nanobioengieneering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Medellin, 050010, Colombia
dc.affiliationVisser, L., Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, Netherlands
dc.affiliationRondón-Villarreal, P., Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga, 680003, Colombia
dc.affiliationHerrera-Pineda, D.F., Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga, 680003, Colombia
dc.affiliationAlarcón-Aldana, J.S., Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga, 680003, Colombia
dc.affiliationVan den Berg, A., Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, Netherlands
dc.affiliationOrozco, J., MaxPlanck Tandem Group in Nanobioengieneering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Medellin, 050010, Colombia
dc.affiliationPinzón-Reyes, E.H., Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga, 680003, Colombia
dc.affiliationMoreno, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050030, Colombia
dc.affiliationRueda-Forero, N.J., Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga, 680003, Colombia
dc.relation.referencesPortela-Dussán, D.D., Chaparro-Giraldo, A., López-Pazos, S.A., Bacillus thuringiensis biotechnology in agriculture (2013) Nova, 11, pp. 87-96. , [CrossRef]
dc.relation.referencesMelo, A.L.D.A., Soccol, V.T., Soccol, C.R., Bacillus thuringiensis: Mechanism of action, resistance, and new applications: A review (2016) Crit. Rev. Biotechnol, 36, pp. 317-326. , [CrossRef] [PubMed]
dc.relation.referencesAkao, T., Mizuki, E., Yamashita, S., Kim, H.S., Lee, D.W., Ohba, M., Specificity of lectin activity of Bacillus thuringiensis parasporal inclusion proteins (2001) J. Basic Microbiol, 41, pp. 3-6. , [CrossRef]
dc.relation.referencesAkiba, T., Okumura, S., Parasporins 1 and 2: Their structure and activity (2017) J. Invertebr. Pathol, 142, pp. 44-49. , [CrossRef] [PubMed]
dc.relation.referencesMizuki, E., Ohba, M., Akao, T., Yamashita, S., Saitoh, H., Park, Y.S., Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: In vitro cell-killing action on human cancer cells (1999) J. Appl. Microbiol, 86, pp. 477-486. , [CrossRef] [PubMed]
dc.relation.referencesAmmons, D.R., Short, J.D., Bailey, J., Hinojosa, G., Tavarez, L., Salazar, M., Rampersad, J.N., Anti-cancer Parasporin toxins are associated with different environments: Discovery of two novel Parasporin 5-like genes (2016) Curr. Microbiol, 72, pp. 184-189. , [CrossRef]
dc.relation.referencesMoazamian, E., Bahador, N., Azarpira, N., Rasouli, M., Anti-cancer Parasporin toxins of new Bacillus thuringiensis against human colon (HCT-116) and blood (CCRF-CEM) cancer cell lines (2018) Curr. Microbiol, 75, pp. 1090-1098. , [CrossRef]
dc.relation.referencesXu, C., Wang, B.C., Yu, Z., Sun, M., Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins (2014) Toxins, 6, pp. 2732-2770. , [CrossRef]
dc.relation.referencesKitada, S., Abe, Y., Shimada, H., Kusaka, Y., Matsuo, Y., Katayama, H., Okumura, S., Kuge, O., Cytocidal actions of parasporin-2, an anti-tumor crystal toxin from Bacillus thuringiensis (2006) J. Biol. Chem, 281, pp. 26350-26360. , [CrossRef]
dc.relation.referencesGonzalez, E., Granados, J.C., Short, J.D., Ammons, D.R., Rampersad, J., Parasporins from a Caribbean Island: Evidence for a globally dispersed Bacillus thuringiensis strain (2011) Curr. Microbiol, 62, pp. 1643-1648. , [CrossRef]
dc.relation.referencesBrasseur, K., Auger, P., Asselin, E., Parent, S., Cote, J.C., Sirois, M., Parasporin-2 from a new Bacillus thuringiensis 4R2 strain induces caspases activation and apoptosis in human cancer cells (2015) PLoS ONE, 10, p. e0135106. , [CrossRef]
dc.relation.referencesMizuki, E., Park, Y.S., Saitoh, H., Yamashita, S., Akao, T., Higuchi, K., Ohba, M., Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis (2000) Clin. Diagn. Lab. Immunol, 7, pp. 625-634. , [CrossRef]
dc.relation.referencesOkassov, A., Nersesyan, A., Kitada, S., Ilin, A., Parasporins as new natural anticancer agents: A review (2015) J. BUON, 20, pp. 5-16. , [PubMed]
dc.relation.referencesHayakawa, T., Kanagawa, R., Kotani, Y., Kimura, M., Yamagiwa, M., Yamane, Y., Takebe, S., Sakai, H., Parasporin-2Ab, a newly isolated cytotoxic crystal protein from Bacillus thuringiensis (2007) Curr. Microbiol, 55, pp. 278-283. , [CrossRef]
dc.relation.referencesKrishnan, V., Domanska, B., Elhigazi, A., Afolabi, F., West, M.J., Crickmore, N., The human cancer cell active toxin Cry41Aa from Bacillus thuringiensis acts like its insecticidal counterparts (2017) Biochem. J, 474, pp. 1591-1602. , [CrossRef] [PubMed]
dc.relation.referencesOhba, M., Mizuki, E., Uemori, A., Parasporin, a new anticancer protein group from Bacillus thuringiensis (2009) Anticancer Res, 29, pp. 427-433. , [PubMed]
dc.relation.referencesEkino, K., Okumura, S., Ishikawa, T., Kitada, S., Saitoh, H., Akao, T., Oka, T., Shin, T., Cloning and characterization of a unique cytotoxic protein parasporin-5 produced by Bacillus thuringiensis A1100 strain (2014) Toxins, 6, pp. 1882-1895. , [CrossRef]
dc.relation.referencesNagamatsu, Y., Okamura, S., Saitou, H., Akao, T., Mizuki, E., Three cry toxins in two types from bacillus thuringiensis strain M019 preferentially kill human hepatocyte cancer and uterus cervix cancer cells (2010) Biosci. Biotechnol. Biochem, 74, pp. 494-498. , [CrossRef]
dc.relation.referencesOkumura, S., Ohba, M., Mizuki, E., Crickmore, N., Côté, J.-C., Nagamatsu, Y., Kitada, S., Shin, T., List of Parasporins, , http://parasporin.fitc.pref.fukuoka.jp/list.html, (accessed on 29 November 2021)
dc.relation.referencesIto, A., Sasaguri, Y., Kitada, S., Kusaka, Y., Kuwano, K., Masutomi, K., Mizuki, E., Ohba, M., A Bacillus thuringiensis crystal protein with selective cytocidal action to human cells (2004) J. Biol. Chem, 279, pp. 21282-21286. , [CrossRef]
dc.relation.referencesKatayama, H., Kusaka, Y., Yokota, H., Akao, T., Kojima, M., Nakamura, O., Mekada, E., Mizuki, E., Parasporin-1, a novel cytotoxic protein from Bacillus thuringiensis, induces Ca2+ influx and a sustained elevation of the cytoplasmic Ca2+ concentration in toxin-sensitive cells (2007) J. Biol. Chem, 282, pp. 7742-7752. , [CrossRef]
dc.relation.referencesMoniatte, M., Van Der Goot, F.G., Buckley, J.T., Pattus, F., Van Dorsselaer, A., Characterisation of the heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry (1996) FEBS Lett, 384, pp. 269-272. , [CrossRef]
dc.relation.referencesKuroda, S., Begum, A., Saga, M., Hirao, A., Mizuki, E., Sakai, H., Hayakawa, T., Parasporin 1Ac2, a novel cytotoxic crystal protein isolated from Bacillus thuringiensis B0462 strain (2013) Curr. Microbiol, 66, pp. 475-480. , [CrossRef] [PubMed]
dc.relation.referencesNagahama, M., Hara, H., Fernandez-Miyakawa, M., Itohayashi, Y., Sakurai, J., Oligomerization of Clostridium perfringens ε-toxin is dependent upon membrane fluidity in liposomes (2006) Biochemistry, 45, pp. 296-302. , [CrossRef]
dc.relation.referencesOkumura, S., Koga, H., Inouye, K., Mizuki, E., Toxicity of Parasporin-4 and health effects of pro-parasporin-4 diet in mice (2014) Toxins, 6, pp. 2115-2126. , [CrossRef] [PubMed]
dc.relation.referencesPeraro, M.D., Van Der Goot, F.G., Pore-forming toxins: Ancient, but never really out of fashion (2016) Nat. Rev. Microbiol, 14, pp. 77-92. , [CrossRef]
dc.relation.referencesAkiba, T., Abe, Y., Kitada, S., Kusaka, Y., Ito, A., Ichimatsu, T., Katayama, H., Mizuki, E., Crystal structure of the Parasporin-2 Bacillus thuringiensis toxin that recognizes cancer cells (2009) J. Mol. Biol, 386, pp. 121-133. , [CrossRef]
dc.relation.referencesAkiba, T., Higuchi, K., Mizuki, E., Ekino, K., Shin, T., Ohba, M., Kanai, R., Harata, K., Nontoxic crystal protein from Bacillus thuringiensis demonstrates a remarkable structural similarity to beta-pore-forming toxins (2006) Proteins, 63, pp. 243-248. , [CrossRef] [PubMed]
dc.relation.referencesIacovache, I., Degiacomi, M.T., Pernot, L., Ho, S., Schiltz, M., Dal Peraro, M., van der Goot, F.G., Dual chaperone role of the C-terminal propeptide in folding and oligomerization of the pore-forming toxin aerolysin (2011) PLoS Pathog, 7, p. e1002135. , [CrossRef]
dc.relation.referencesOkumura, S., Saitoh, H., Wasano, N., Katayama, H., Higuchi, K., Mizuki, E., Inouye, K., Efficient solubilization, activation, and purification of recombinant Cry45Aa of Bacillus thuringiensis expressed as inclusion bodies in Escherichia coli (2006) Protein Expr. Purif, 47, pp. 144-151. , [CrossRef] [PubMed]
dc.relation.referencesOkumura, S., Saitoh, H., Ishikawa, T., Wasano, N., Yamashita, S., Kusumoto, K., Akao, T., Inouye, K., Identification of a novel cytotoxic protein, Cry45Aa, from Bacillus thuringiensis A1470 and its selective cytotoxic activity against various mammalian cell lines (2005) J. Agric. Food. Chem, 53, pp. 6313-6318. , [CrossRef]
dc.relation.referencesPandian, G.N., Ishikawa, T., Togashi, M., Shitomi, Y., Haginoya, K., Yamamoto, S., Nishiumi, T., Hori, H., Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide-binding protein, and the resulting complex has antimicrobial activity (2008) Appl. Environ. Microbiol, 74, pp. 1324-1331. , [CrossRef] [PubMed]
dc.relation.referencesAldeewan, A., Zhang, Y., Su, L., Bacillus thuringiensis Parasporins functions on cancer cells (2014) Int. J. Pure Appl. Biosci, 4, pp. 67-74
dc.relation.referencesPrasad, S.S., Shethna, Y.I., Purification, crystallization and partial characterization of the antitumour and insecticidal protein subunit from the delta-endotoxin of Bacillus thuringiensis var. thuringiensis (1974) Biochim. Biophys. Acta, 362, pp. 558-566. , [CrossRef]
dc.relation.referencesPatyar, S., Joshi, R., Byrav, D.P., Prakash, A., Medhi, B., Das, B., Bacteria in cancer therapy: A novel experimental strategy (2010) J. Biomed. Sci, 17, p. 21. , [CrossRef]
dc.relation.referencesKatayama, H., Yokota, H., Akao, T., Nakamura, O., Ohba, M., Mekada, E., Mizuki, E., Parasporin-1, a novel cytotoxic protein to human cells from non-insecticidal parasporal inclusions of Bacillus thuringiensis (2005) J. Biochem, 137, pp. 17-25. , [CrossRef]
dc.relation.referencesSanahuja, G., Banakar, R., Twyman, R.M., Capell, T., Christou, P., Bacillus thuringiensis: A century of research, development and commercial applications (2011) Plant Biotechnol. J, 9, pp. 283-300. , [CrossRef]
dc.relation.referencesOkumura, S., Saitoh, H., Ishikawa, T., Mizuki, E., Inouye, K., Identification and characterization of a novel cytotoxic protein, parasporin-4, produced by Bacillus thuringiensis A1470 strain (2008) Biotechnol. Annu. Rev, 14, pp. 225-252. , [CrossRef]
dc.relation.referencesChubicka, T., Girija, D., Deepa, K., Salini, S., Meera, N., Raghavamenon, A.C., Divya, M.K., Babu, T.D., A parasporin from Bacillus thuringiensis native to Peninsular India induces apoptosis in cancer cells through intrinsic pathway (2018) J. Biosci, 43, pp. 407-416. , [CrossRef] [PubMed]
dc.relation.referencesNelson, K.L., Brodsky, R.A., Buckley, J.T., Channels formed by subnanomolar concentrations of the toxin aerolysin trigger apoptosis of T lymphomas (1999) Cell. Microbiol, 1, pp. 69-74. , [CrossRef] [PubMed]
dc.relation.referencesMaagd, R.A., Bravo, A., Berry, C., Crickmore, N., Schnepf, H.E., Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria (2003) Annu. Rev. Genet, 37, pp. 409-433. , [CrossRef]
dc.relation.referencesBalabanova, L., Golotin, V., Podvolotskaya, A., Rasskazov, V., Genetically modified proteins: Functional improvement and chimeragenesis (2015) Bioengineered, 6, pp. 262-274. , [CrossRef]
dc.relation.referencesKim, S.B., Izumi, H., Functional artificial luciferases as an optical readout for bioassays (2014) Biochem. Biophys. Res. Commun, 448, pp. 418-423. , [CrossRef]
dc.relation.referencesHe, L., Friedman, A.M., Bailey-Kellogg, C., Algorithms for optimizing cross-overs in DNA shuffling (2012) BMC Bioinform, 13, p. S3. , [CrossRef] [PubMed]
dc.relation.referencesWedge, D.C., Rowe, W., Kell, D.B., Knowles, J., In silico modelling of directed evolution: Implications for experimental design and stepwise evolution (2009) J. Theor. Biol, 257, pp. 131-141. , [CrossRef]
dc.relation.referencesPinzon, E.H., Sierra, D.A., Suarez, M.O., Orduz, S., Florez, A.M., DNA secondary structure formation by DNA shuffling of the conserved domains of the Cry protein of Bacillus thuringiensis (2017) BMC Biophys, 10, pp. 1-10. , [CrossRef] [PubMed]
dc.relation.referencesStimple, S.D., Smith, M.D., Tessier, P.M., Directed evolution methods for overcoming trade-offs between protein activity and stability (2020) AIChE J, 66, p. e16814. , [CrossRef] [PubMed]
dc.relation.referencesBasit, N., Wechsler, H., Prediction of enzyme mutant activity using computational mutagenesis and incremental transduction (2011) Adv. Bioinform, 2011, pp. 1-9. , [CrossRef]
dc.relation.referencesFlorez, A.M., Suarez-Barrera, M.O., Morales, G.M., Rivera, K.V., Orduz, S., Ochoa, R., Guerra, D., Muskus, C., Toxic activity, molecular modeling and docking simulations of Bacillus thuringiensis Cry11 toxin variants obtained via DNA shuffling (2018) Front. Microbiol, 9, p. 2461. , [CrossRef] [PubMed]
dc.relation.referencesBenFarhat-Touzri, D., Driss, F., Jemli, S., Tounsi, S., Molecular characterization of Cry1D-133 toxin from Bacillus thuringiensis strain HD133 and its toxicity against Spodoptera littoralis (2018) Int. J. Biol. Macromol, 112, pp. 1-6. , [CrossRef]
dc.relation.referencesSriwimol, W., Aroonkesorn, A., Sakdee, S., Kanchanawarin, C., Uchihashi, T., Ando, T., Angsuthanasombat, C., Potential prepore trimer formation by the Bacillus thuringiensis mosquito-specific toxin: Molecular insights into a critical prerequisite of membrane-bound monomers (2015) J. Biol. Chem, 290, pp. 20793-20803. , [CrossRef]
dc.relation.referencesPacheco, S., Gómez, I., Sánchez, J., García-Gómez, B.I., Czajkowsky, D.M., Zhang, J., Soberón, M., Bravo, A., Helix α-3 intermolecular salt bridges and conformational changes are essential for toxicity of Bacillus thuringiensis 3D-Cry toxin family (2018) Sci. Rep, 8, p. 10331. , [CrossRef]
dc.relation.referencesPhillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable molecular dynamics with NAMD (2005) J. Comput. Chem, 26, pp. 1781-1802. , [CrossRef]
dc.relation.referencesDeist, B.R., Rausch, M.A., Fernandez-Luna, M.T., Adang, M.J., Bonning, B.C., Bt toxin modification for enhanced efficacy (2014) Toxins, 6, pp. 3005-3027. , [CrossRef] [PubMed]
dc.relation.referencesSansinenea, E., Discovery and Description of Bacillus thuringiensis (2012) Bacillus Thuringiensis Biotechnology, pp. 3-18. , Springer: Dordrecht, The Netherlands, ISBN 9789400730212
dc.relation.referencesLópez-Meza, J.E., Ibarra, J.E., Characterization of a novel strain of Bacillus thuringiensis (1996) Appl. Environ. Microbiol, 62, pp. 1306-1310. , [CrossRef]
dc.relation.referencesWalters, F.S., deFontes, C.M., Hart, H., Warren, G.W., Chen, J.S., Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein (2010) Appl. Environ. Microbiol, 76, pp. 3082-3088. , [CrossRef]
dc.relation.referencesShah, J.V., Yadav, R., Ingle, S.S., Engineered Cry1Ac-Cry9Aa hybrid Bacillus thuringiensis delta-endotoxin with improved insecticidal activity against Helicoverpa armigera (2017) Arch. Microbiol, 199, pp. 1069-1075. , [CrossRef] [PubMed]
dc.relation.referencesde Maagd, R.A., Weemen-Hendriks, M., Stiekema, W., Bosch, D., Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids (2000) Appl. Environ. Microbiol, 66, pp. 1559-1563. , [CrossRef]
dc.relation.referencesKarlova, R., Weemen-Hendriks, M., Naimov, S., Ceron, J., Dukiandjiev, S., de Maagd, R.A., Bacillus thuringiensis delta-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids (2005) J. Invertebr. Pathol, 88, pp. 169-172. , [CrossRef] [PubMed]
dc.relation.referencesNaimov, S., Weemen-Hendriks, M., Dukiandjiev, S., De Maagd, R.A., Bacillus thuringiemis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado Potato Beetle (2001) Appl. Environ. Microbiol, 67, pp. 5328-5330. , [CrossRef]
dc.relation.referencesAbdullah, M.A.F., Alzate, O., Mohammad, M., McNall, R.J., Adang, M.J., Dean, D.H., Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering (2003) Appl. Environ. Microbiol, 69, pp. 5343-5353. , [CrossRef]
dc.relation.referencesAbdullah, M.A.F., Dean, D.H., Enhancement of Cry19Aa mosquitocidal activity against Aedes aegypti by mutations in the putative loop regions of domain II (2004) Appl. Environ. Microbiol, 70, pp. 3769-3771. , [CrossRef]
dc.relation.referencesMcNeil, B.C., Dean, D.H., Bacillus thuringiensis Cry2Ab is active on Anopheles mosquitoes: Single D block exchanges reveal critical residues involved in activity (2011) FEMS Microbiol. Lett, 325, pp. 16-21. , [CrossRef]
dc.relation.referencesLiu, X.S., Dean, D.H., Redesigning Bacillus thuringiensis Cry1Aa toxin into a mosquito toxin (2006) Protein Eng. Des. Sel, 19, pp. 107-111. , [CrossRef]
dc.relation.referencesGómez, I., Ocelotl, J., Sánchez, J., Lima, C., Martins, E., Rosales-Juárez, A., Aguilar-Medel, S., Monnerat, R., Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa toxicity to Spodoptera frugiperda by domain III mutations indicates there are two limiting steps in toxicity as defined by receptor binding and protein stability (2018) Appl. Environ. Microbiol, 84, pp. e01393-18. , [CrossRef] [PubMed]
dc.relation.referencesCraveiro, K.I.C., Júnior, J.E.G., Silva, M.C.M., Macedo, L.L.P., Lucena, W.A., Silva, M.S., Júnior, J.D.A.d.S., Santiago, A.D., Variant Cry1Ia toxins generated by DNA shuffling are active against sugarcane giant borer (2010) J. Biotechnol, 145, pp. 215-221. , [CrossRef]
dc.relation.referencesSoberon, M., Pardo-Lopez, L., Lopez, I., Gomez, I., Tabashnik, B.E., Bravo, A., Engineering modified Bt toxins to counter insect resistance (2007) Science, 318, pp. 1640-1642. , [CrossRef] [PubMed]
dc.relation.referencesTabashnik, B.E., Huang, F., Ghimire, M.N., Leonard, B.R., Siegfried, B.D., Rangasamy, M., Yang, Y., Heckel, D.G., Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance (2011) Nat. Biotechnol, 29, pp. 1128-1131. , [CrossRef] [PubMed]
dc.relation.referencesPark, H.W., Bideshi, D.K., Federici, B.A., Molecular genetic manipulation of truncated Cry1C protein synthesis in Bacillus thuringiensis to improve stability and yield (2000) Appl. Environ. Microbiol, 66, pp. 4449-4455. , [CrossRef]
dc.relation.referencesFujii, Y., Tanaka, S., Otsuki, M., Hoshino, Y., Endo, H., Sato, R., Affinity maturation of Cry1Aa toxin to the Bombyx mori cadherin-like receptor by directed evolution (2013) Mol. Biotechnol, 54, pp. 888-899. , [CrossRef] [PubMed]
dc.relation.referencesOliveira, G.R., Silva, M.C., Lucena, W.A., Nakasu, E.Y., Firmino, A.A., Beneventi, M.A., Souza, D.S., Rigden, D.J., Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis) (2011) BMC Biotechnol, 11, p. 85. , [CrossRef]
dc.relation.referencesShao, E., Lin, L., Chen, C., Chen, H., Zhuang, H., Wu, S., Sha, L., Huang, Z., Loop replacements with gut-binding peptides in Cry1Ab domain II enhanced toxicity against the brown planthopper, Nilaparvata lugens (Stål) (2016) Sci. Rep, 6, p. 20106. , [CrossRef] [PubMed]
dc.relation.referencesVílchez, S., Making 3D-cry toxin mutants: Much more than a tool of understanding toxins mechanism of action (2020) Toxins, 12, p. 600. , [CrossRef] [PubMed]
dc.relation.referencesVelásquez, L.-F., Rojas, D., Cerón, J., Proteínas de Bacillus thuringiensis con actividad citotóxica: Parasporinas (2018) Rev. Colomb. Biotecnol, 20, pp. 89-100. , [CrossRef]
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/review
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem