dc.contributor.author | Valdés-Tresanco M.S | |
dc.contributor.author | Valdés-Tresanco M.E | |
dc.contributor.author | Valiente P.A | |
dc.contributor.author | Moreno E. | |
dc.date.accessioned | 2022-09-14T14:33:47Z | |
dc.date.available | 2022-09-14T14:33:47Z | |
dc.date.created | 2021 | |
dc.identifier.issn | 15499618 | |
dc.identifier.uri | http://hdl.handle.net/11407/7472 | |
dc.description | Molecular mechanics/Poisson-Boltzmann (Generalized-Born) surface area is one of the most popular methods to estimate binding free energies. This method has been proven to balance accuracy and computational efficiency, especially when dealing with large systems. As a result of its popularity, several programs have been developed for performing MM/PB(GB)SA calculations within the GROMACS community. These programs, however, present several limitations. Here we present gmx_MMPBSA, a new tool to perform end-state free energy calculations from GROMACS molecular dynamics trajectories. gmx_MMPBSA provides the user with several options, including binding free energy calculations with different solvation models (PB, GB, or 3D-RISM), stability calculations, computational alanine scanning, entropy corrections, and binding free energy decomposition. Noteworthy, several promising methodologies to calculate relative binding free energies such as alanine scanning with variable dielectric constant and interaction entropy have also been implemented in gmx_MMPBSA. Two additional tools - gmx_MMPBSA_test and gmx_MMPBSA_ana - have been integrated within gmx_MMPBSA to improve its usability. Multiple illustrating examples can be accessed through gmx_MMPBSA_test, while gmx_MMPBSA_ana provides fast, easy, and efficient access to different graphics plotted from gmx_MMPBSA output files. The latest version (v1.4.3, 26/05/2021) is available free of charge (documentation, test files, and tutorials included) at https://github.com/Valdes-Tresanco-MS/gmx_MMPBSA. © | eng |
dc.language.iso | eng | |
dc.publisher | American Chemical Society | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117187011&doi=10.1021%2facs.jctc.1c00645&partnerID=40&md5=05824675e3fc89747f3f6fe9017c6406 | |
dc.source | Journal of Chemical Theory and Computation | |
dc.title | Gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1021/acs.jctc.1c00645 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Valdés-Tresanco, M.S., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.affiliation | Valdés-Tresanco, M.E., Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada | |
dc.affiliation | Valiente, P.A., Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada, Center of Protein Studies, Faculty of Biology, University of Havana, 25 & J, La Habana, 10400, Cuba | |
dc.affiliation | Moreno, E., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.relation.references | Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., Case, D.A., Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices (1998) J. Am. Chem. Soc., 120 (37), pp. 9401-9409 | |
dc.relation.references | Massova, I., Kollman, P.A., Combined Molecular Mechanical and Continuum Solvent Approach (MM-PBSA/GBSA) to Predict Ligand Binding (2000) Perspect. Drug Discovery Des., 18, p. 113 | |
dc.relation.references | Genheden, S., Ryde, U., The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities (2015) Expert Opin. Drug Discovery, 10 (5), pp. 449-461 | |
dc.relation.references | Wang, C., Greene, D., Xiao, L., Qi, R., Luo, R., Recent Developments and Applications of the MMPBSA Method (2018) Front. Mol. Biosci., 4, p. 87 | |
dc.relation.references | Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J.Z.H., Hou, T., End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design (2019) Chem. Rev., 119 (16), pp. 9478-9508 | |
dc.relation.references | Miller, B.R., McGee, T.D.J., Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E., MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations (2012) J. Chem. Theory Comput., 8 (9), pp. 3314-3321 | |
dc.relation.references | Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M.J., Onufriev, A., Woods, R.J., The Amber Biomolecular Simulation Programs (2005) J. Comput. Chem., 26 (16), pp. 1668-1688 | |
dc.relation.references | Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E., GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers (2015) SoftwareX, 12, pp. 19-25 | |
dc.relation.references | Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L.E., Brookes, D.H., Baker, N.A., Improvements to the APBS Biomolecular Solvation Software Suite (2018) Protein Sci., 27 (1), pp. 112-128 | |
dc.relation.references | Kumari, R., Kumar, R., Lynn, A., G_mmpbsa - A GROMACS Tool for High-Throughput MM-PBSA Calculations (2014) J. Chem. Inf. Model., 54 (7), pp. 1951-1962 | |
dc.relation.references | Paissoni, C., Spiliotopoulos, D., Musco, G., Spitaleri, A., GMXPBSA 2.0: A GROMACS Tool to Perform MM/PBSA and Computational Alanine Scanning (2015) Comput. Phys. Commun., 186, pp. 105-107 | |
dc.relation.references | Case, D.A., Aktulga, H.M., Belfon, K., Ben-Shalom, I.Y., Brozell, S.R., Cerutti, D.S., Iii E., C.T., Kollman, P.A., (2021) Amber 2021, , University of California: San Francisco | |
dc.relation.references | Sitkoff, D., Sharp, K.A., Honig, B., Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models (1994) J. Phys. Chem., 98 (7), pp. 1978-1988 | |
dc.relation.references | Tan, C., Tan, Y.H., Luo, R., Implicit Nonpolar Solvent Models (2007) J. Phys. Chem. B, 111, p. 12263 | |
dc.relation.references | Karplus, M., Kushick, J.N., Method for Estimating the Configurational Entropy of Macromolecules (1981) Macromolecules, 14 (2), p. 325 | |
dc.relation.references | Brooks, B.R., Janežič, D., Karplus, M., Harmonic Analysis of Large Systems. I. Methodology (1995) J. Comput. Chem., 16 (12), pp. 1522-1542 | |
dc.relation.references | Rastelli, G., Del Rio, A., Degliesposti, G., Sgobba, M., Fast and Accurate Predictions of Binding Free Energies Using MM-PBSA and MM-GBSA (2009) J. Comput. Chem., 31 (4), pp. 797-810 | |
dc.relation.references | Duan, L., Liu, X., Zhang, J.Z., Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy (2016) J. Am. Chem. Soc., 138, p. 5722 | |
dc.relation.references | Lee, M.S., Olson, M.A., Calculation of Absolute Protein-Ligand Binding Affinity Using Path and Endpoint Approaches (2006) Biophys. J., 90, p. 864 | |
dc.relation.references | Daggett, V., Long Timescale Simulations (2000) Curr. Opin. Struct. Biol., 10, p. 160 | |
dc.relation.references | Shirts, M.R., Klein, C., Swails, J.M., Yin, J., Gilson, M.K., Mobley, D.L., Case, D.A., Zhong, E.D., Lessons Learned from Comparing Molecular Dynamics Engines on the SAMPL5 Dataset (2017) J. Comput.-Aided Mol. Des., 31 (1), pp. 147-161 | |
dc.relation.references | Horn, A.H.C., A Consistent Force Field Parameter Set for Zwitterionic Amino Acid Residues (2014) J. Mol. Model., 20 (11), pp. 1-14 | |
dc.relation.references | Waskom, M., Seaborn: Statistical Data Visualization (2021) J. Open Source Softw., 6 (60), p. 3021 | |
dc.relation.references | Hunter, J.D., Matplotlib: A 2D Graphics Environment (2007) Comput. Sci. Eng., 9 (3), pp. 90-95 | |
dc.relation.references | McKinney, W., (2010) Data Structures for Statistical Computing in Python, p. 56 | |
dc.relation.references | Harris, C.R., Millman, K.J., Van Der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Oliphant, T.E., Array Programming with NumPy (2020) Nature, 585, pp. 357-362 | |
dc.relation.references | Hawkins, G.D., Cramer, C.J., Truhlar, D.G., Parametrized Models of Aqueous Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium (1996) J. Phys. Chem., 100, p. 19824 | |
dc.relation.references | Onufriev, A., Bashford, D., Case, D.A., Exploring Protein Native States and Large-Scale Conformational Changes with a Modified Generalized Born Model (2004) Proteins: Struct., Funct., Genet., 55 (2), p. 383 | |
dc.relation.references | Mongan, J., Simmerling, C., McCammon, J.A., Case, D.A., Onufriev, A., Generalized Born Model with a Simple, Robust Molecular Volume Correction (2007) J. Chem. Theory Comput., 3 (1), pp. 156-169 | |
dc.relation.references | Nguyen, H., Roe, D.R., Simmerling, C., Improved Generalized Born Solvent Model Parameters for Protein Simulations (2013) J. Chem. Theory Comput., 9 (4), pp. 2020-2034 | |
dc.relation.references | Pellegrini, E., Field, M.J., A Generalized-Born Solvation Model for Macromolecular Hybrid-Potential Calculations (2002) J. Phys. Chem. A, 106 (7), pp. 1316-1326 | |
dc.relation.references | Walker, R.C., Crowley, M.F., Case, D.A., The Implementation of a Fast and Accurate QM/MM Potential Method in Amber (2008) J. Comput. Chem., 29 (7), pp. 1019-1031 | |
dc.relation.references | Luo, R., David, L., Gilson, M.K., Accelerated Poisson-Boltzmann Calculations for Static and Dynamic Systems (2002) J. Comput. Chem., 23, p. 1244 | |
dc.relation.references | Wang, J., Luo, R., Assessment of Linear Finite-Difference Poisson-Boltzmann Solvers (2010) J. Comput. Chem., 31 (8), p. 1689 | |
dc.relation.references | Wang, J., Cai, Q., Xiang, Y., Luo, R., Reducing Grid Dependence in Finite-Difference Poisson-Boltzmann Calculations (2012) J. Chem. Theory Comput., 8 (8), pp. 2741-2751 | |
dc.relation.references | Cai, Q., Hsieh, M.-J., Wang, J., Luo, R., Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers (2010) J. Chem. Theory Comput., 6 (1), pp. 203-211 | |
dc.relation.references | Botello-Smith, W.M., Liu, X., Cai, Q., Li, Z., Zhao, H., Luo, R., Numerical Poisson-Boltzmann Model for Continuum Membrane Systems (2013) Chem. Phys. Lett., 555, p. 274 | |
dc.relation.references | Greene, D., Qi, R., Nguyen, R., Qiu, T., Luo, R., Heterogeneous Dielectric Implicit Membrane Model for the Calculation of MMPBSA Binding Free Energies (2019) J. Chem. Inf. Model., 59 (6), pp. 3041-3056 | |
dc.relation.references | Xiao, L., Diao, J., Greene, D., Wang, J., Luo, R., A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins (2017) J. Chem. Theory Comput., 13 (7), pp. 3398-3412 | |
dc.relation.references | Callenberg, K.M., Choudhary, O.P., De Forest, G.L., Gohara, D.W., Baker, N.A., Grabe, M., APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane (2010) PLoS One, 5 (9), p. 12722 | |
dc.relation.references | Genheden, S., Luchko, T., Gusarov, S., Kovalenko, A., Ryde, U., An MM/3D-RISM Approach for Ligand Binding Affinities (2010) J. Phys. Chem. B, 114 (25), pp. 8505-8516 | |
dc.relation.references | Luchko, T., Gusarov, S., Roe, D.R., Simmerling, C., Case, D.A., Tuszynski, J., Kovalenko, A., Three-Dimensional Molecular Theory of Solvation Coupled with Molecular Dynamics in Amber (2010) J. Chem. Theory Comput., 6 (3), pp. 607-624 | |
dc.relation.references | Yan, Y., Yang, M., Ji, C.G., Zhang, J.Z.H., Interaction Entropy for Computational Alanine Scanning (2017) J. Chem. Inf. Model., 57 (5), pp. 1112-1122 | |
dc.relation.references | Zhong, S., Huang, K., Luo, S., Dong, S., Duan, L., Improving the Performance of the MM/PBSA and MM/GBSA Methods in Recognizing the Native Structure of the Bcl-2 Family Using the Interaction Entropy Method (2020) Phys. Chem. Chem. Phys., 22 (7), pp. 4240-4251 | |
dc.relation.references | Huang, K., Luo, S., Cong, Y., Zhong, S., Zhang, J.Z.H., Duan, L., An Accurate Free Energy Estimator: Based on MM/PBSA Combined with Interaction Entropy for Protein-Ligand Binding Affinity (2020) Nanoscale, 12 (19), pp. 10737-10750 | |
dc.relation.references | Spacková, N., Cheatham, T.E., Ryjácek, F., Lankas, F., Van Meervelt, L., Hobza, P., Sponer, J., Molecular Dynamics Simulations and Thermodynamics Analysis of DNA-Drug Complexes. Minor Groove Binding between 4′,6-Diamidino-2-Phenylindole and DNA Duplexes in Solution (2003) J. Am. Chem. Soc., 125 (7), pp. 1759-1769 | |
dc.relation.references | Checa, A., Ortiz, A.R., De Pascual-Teresa, B., Gago, F., Assessment of Solvation Effects on Calculated Binding Affinity Differences: Trypsin Inhibition by Flavonoids as a Model System for Congeneric Series (1997) J. Med. Chem., 40 (25), pp. 4136-4145 | |
dc.relation.references | Sun, Z., Yan, Y.N., Yang, M., Zhang, J.Z.H., Interaction Entropy for Protein-Protein Binding (2017) J. Chem. Phys., 146 (12), p. 124124 | |
dc.relation.references | Schrödinger, L., (2019) The PyMOL Molecular Graphics System, , Version 2.3.4 | |
dc.relation.references | Dalcin, L.D., Paz, R.R., Kler, P.A., Cosimo, A., Parallel Distributed Computing Using Python (2011) Adv. Water Resour., 34 (9), pp. 1124-1139 | |
dc.relation.references | Fujinaga, M., Sielecki, A.R., Read, R.J., Ardelt, W., Laskowski, M., James, M.N.G., Crystal and Molecular Structures of the Complex of α-Chymotrypsin with Its Inhibitor Turkey Ovomucoid Third Domain at 1.8 Å Resolution (1987) J. Mol. Biol., 195 (2), pp. 397-418 | |
dc.relation.references | Ekberg, V., Ryde, U., On the Use of Interaction Entropy and Related Methods to Estimate Binding Entropies (2021) J. Chem. Theory Comput., 17 (8), pp. 5379-5391 | |
dc.relation.references | Prasad, L., Waygood, E.B., Lee, J.S., Delbaere, L.T.J., The 2.5 Å Resolution Structure of the Jel42 Fab Fragment/HPr Complex (1998) J. Mol. Biol., 280 (5), pp. 829-845 | |
dc.relation.references | Jankauskaitė, J., Jiménez-García, B., Dapkū Nas, J., Fernández-Recio, J., Moal, I.H., SKEMPI 2.0: An Updated Benchmark of Changes in Protein-Protein Binding Energy, Kinetics and Thermodynamics upon Mutation (2019) Bioinformatics, 35 (3), pp. 462-469 | |
dc.relation.references | Kabat, E.A., (1991) Sequences of Proteins of Immunological Interest, , U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health: Bethesda, MD | |
dc.relation.references | Prasad, L., Sharma, S., Vandonselaar, M., Quail, J.W., Lee, J.S., Waygood, E.B., Wilson, K.S., Delbaere, L.T.J., Evaluation of Mutagenesis for Epitope Mapping. Structure of an Antibody- Protein Antigen Complex (1993) J. Biol. Chem., 268 (15), pp. 10705-10708 | |
dc.relation.references | Kostlánová, N., Mitchell, E.P., Lortat-Jacob, H., Oscarson, S., Lahmann, M., Gilboa-Garber, N., Chambat, G., Imberty, A., The Fucose-Binding Lectin from Ralstonia Solanacearum: A New Type of β-Propeller Architecture Formed by Oligomerization and Interacting with Fucoside, Fucosyllactose, and Plant Xyloglucan (2005) J. Biol. Chem., 280 (30), pp. 27839-27849 | |
dc.relation.references | Wimmerová, M., Kozmon, S., Nečasová, I., Mishra, S.K., Komárek, J., Koča, J., Stacking Interactions between Carbohydrate and Protein Quantified by Combination of Theoretical and Experimental Methods (2012) PLoS One, 7 (10), p. 46032 | |
dc.relation.references | Mishra, S.K., Koča, J., Assessing the Performance of MM/PBSA, MM/GBSA, and QM-MM/GBSA Approaches on Protein/Carbohydrate Complexes: Effect of Implicit Solvent Models, QM Methods, and Entropic Contributions (2018) J. Phys. Chem. B, 122 (34), pp. 8113-8121 | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |