Mostrar el registro sencillo del ítem

dc.contributor.authorValdés-Tresanco M.S
dc.contributor.authorValdés-Tresanco M.E
dc.contributor.authorValiente P.A
dc.contributor.authorMoreno E.
dc.date.accessioned2022-09-14T14:33:47Z
dc.date.available2022-09-14T14:33:47Z
dc.date.created2021
dc.identifier.issn15499618
dc.identifier.urihttp://hdl.handle.net/11407/7472
dc.descriptionMolecular mechanics/Poisson-Boltzmann (Generalized-Born) surface area is one of the most popular methods to estimate binding free energies. This method has been proven to balance accuracy and computational efficiency, especially when dealing with large systems. As a result of its popularity, several programs have been developed for performing MM/PB(GB)SA calculations within the GROMACS community. These programs, however, present several limitations. Here we present gmx_MMPBSA, a new tool to perform end-state free energy calculations from GROMACS molecular dynamics trajectories. gmx_MMPBSA provides the user with several options, including binding free energy calculations with different solvation models (PB, GB, or 3D-RISM), stability calculations, computational alanine scanning, entropy corrections, and binding free energy decomposition. Noteworthy, several promising methodologies to calculate relative binding free energies such as alanine scanning with variable dielectric constant and interaction entropy have also been implemented in gmx_MMPBSA. Two additional tools - gmx_MMPBSA_test and gmx_MMPBSA_ana - have been integrated within gmx_MMPBSA to improve its usability. Multiple illustrating examples can be accessed through gmx_MMPBSA_test, while gmx_MMPBSA_ana provides fast, easy, and efficient access to different graphics plotted from gmx_MMPBSA output files. The latest version (v1.4.3, 26/05/2021) is available free of charge (documentation, test files, and tutorials included) at https://github.com/Valdes-Tresanco-MS/gmx_MMPBSA. ©eng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85117187011&doi=10.1021%2facs.jctc.1c00645&partnerID=40&md5=05824675e3fc89747f3f6fe9017c6406
dc.sourceJournal of Chemical Theory and Computation
dc.titleGmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1021/acs.jctc.1c00645
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationValdés-Tresanco, M.S., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia
dc.affiliationValdés-Tresanco, M.E., Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
dc.affiliationValiente, P.A., Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada, Center of Protein Studies, Faculty of Biology, University of Havana, 25 & J, La Habana, 10400, Cuba
dc.affiliationMoreno, E., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia
dc.relation.referencesSrinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., Case, D.A., Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices (1998) J. Am. Chem. Soc., 120 (37), pp. 9401-9409
dc.relation.referencesMassova, I., Kollman, P.A., Combined Molecular Mechanical and Continuum Solvent Approach (MM-PBSA/GBSA) to Predict Ligand Binding (2000) Perspect. Drug Discovery Des., 18, p. 113
dc.relation.referencesGenheden, S., Ryde, U., The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities (2015) Expert Opin. Drug Discovery, 10 (5), pp. 449-461
dc.relation.referencesWang, C., Greene, D., Xiao, L., Qi, R., Luo, R., Recent Developments and Applications of the MMPBSA Method (2018) Front. Mol. Biosci., 4, p. 87
dc.relation.referencesWang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J.Z.H., Hou, T., End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design (2019) Chem. Rev., 119 (16), pp. 9478-9508
dc.relation.referencesMiller, B.R., McGee, T.D.J., Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E., MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations (2012) J. Chem. Theory Comput., 8 (9), pp. 3314-3321
dc.relation.referencesCase, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M.J., Onufriev, A., Woods, R.J., The Amber Biomolecular Simulation Programs (2005) J. Comput. Chem., 26 (16), pp. 1668-1688
dc.relation.referencesAbraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E., GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers (2015) SoftwareX, 12, pp. 19-25
dc.relation.referencesJurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L.E., Brookes, D.H., Baker, N.A., Improvements to the APBS Biomolecular Solvation Software Suite (2018) Protein Sci., 27 (1), pp. 112-128
dc.relation.referencesKumari, R., Kumar, R., Lynn, A., G_mmpbsa - A GROMACS Tool for High-Throughput MM-PBSA Calculations (2014) J. Chem. Inf. Model., 54 (7), pp. 1951-1962
dc.relation.referencesPaissoni, C., Spiliotopoulos, D., Musco, G., Spitaleri, A., GMXPBSA 2.0: A GROMACS Tool to Perform MM/PBSA and Computational Alanine Scanning (2015) Comput. Phys. Commun., 186, pp. 105-107
dc.relation.referencesCase, D.A., Aktulga, H.M., Belfon, K., Ben-Shalom, I.Y., Brozell, S.R., Cerutti, D.S., Iii E., C.T., Kollman, P.A., (2021) Amber 2021, , University of California: San Francisco
dc.relation.referencesSitkoff, D., Sharp, K.A., Honig, B., Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models (1994) J. Phys. Chem., 98 (7), pp. 1978-1988
dc.relation.referencesTan, C., Tan, Y.H., Luo, R., Implicit Nonpolar Solvent Models (2007) J. Phys. Chem. B, 111, p. 12263
dc.relation.referencesKarplus, M., Kushick, J.N., Method for Estimating the Configurational Entropy of Macromolecules (1981) Macromolecules, 14 (2), p. 325
dc.relation.referencesBrooks, B.R., Janežič, D., Karplus, M., Harmonic Analysis of Large Systems. I. Methodology (1995) J. Comput. Chem., 16 (12), pp. 1522-1542
dc.relation.referencesRastelli, G., Del Rio, A., Degliesposti, G., Sgobba, M., Fast and Accurate Predictions of Binding Free Energies Using MM-PBSA and MM-GBSA (2009) J. Comput. Chem., 31 (4), pp. 797-810
dc.relation.referencesDuan, L., Liu, X., Zhang, J.Z., Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy (2016) J. Am. Chem. Soc., 138, p. 5722
dc.relation.referencesLee, M.S., Olson, M.A., Calculation of Absolute Protein-Ligand Binding Affinity Using Path and Endpoint Approaches (2006) Biophys. J., 90, p. 864
dc.relation.referencesDaggett, V., Long Timescale Simulations (2000) Curr. Opin. Struct. Biol., 10, p. 160
dc.relation.referencesShirts, M.R., Klein, C., Swails, J.M., Yin, J., Gilson, M.K., Mobley, D.L., Case, D.A., Zhong, E.D., Lessons Learned from Comparing Molecular Dynamics Engines on the SAMPL5 Dataset (2017) J. Comput.-Aided Mol. Des., 31 (1), pp. 147-161
dc.relation.referencesHorn, A.H.C., A Consistent Force Field Parameter Set for Zwitterionic Amino Acid Residues (2014) J. Mol. Model., 20 (11), pp. 1-14
dc.relation.referencesWaskom, M., Seaborn: Statistical Data Visualization (2021) J. Open Source Softw., 6 (60), p. 3021
dc.relation.referencesHunter, J.D., Matplotlib: A 2D Graphics Environment (2007) Comput. Sci. Eng., 9 (3), pp. 90-95
dc.relation.referencesMcKinney, W., (2010) Data Structures for Statistical Computing in Python, p. 56
dc.relation.referencesHarris, C.R., Millman, K.J., Van Der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Oliphant, T.E., Array Programming with NumPy (2020) Nature, 585, pp. 357-362
dc.relation.referencesHawkins, G.D., Cramer, C.J., Truhlar, D.G., Parametrized Models of Aqueous Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium (1996) J. Phys. Chem., 100, p. 19824
dc.relation.referencesOnufriev, A., Bashford, D., Case, D.A., Exploring Protein Native States and Large-Scale Conformational Changes with a Modified Generalized Born Model (2004) Proteins: Struct., Funct., Genet., 55 (2), p. 383
dc.relation.referencesMongan, J., Simmerling, C., McCammon, J.A., Case, D.A., Onufriev, A., Generalized Born Model with a Simple, Robust Molecular Volume Correction (2007) J. Chem. Theory Comput., 3 (1), pp. 156-169
dc.relation.referencesNguyen, H., Roe, D.R., Simmerling, C., Improved Generalized Born Solvent Model Parameters for Protein Simulations (2013) J. Chem. Theory Comput., 9 (4), pp. 2020-2034
dc.relation.referencesPellegrini, E., Field, M.J., A Generalized-Born Solvation Model for Macromolecular Hybrid-Potential Calculations (2002) J. Phys. Chem. A, 106 (7), pp. 1316-1326
dc.relation.referencesWalker, R.C., Crowley, M.F., Case, D.A., The Implementation of a Fast and Accurate QM/MM Potential Method in Amber (2008) J. Comput. Chem., 29 (7), pp. 1019-1031
dc.relation.referencesLuo, R., David, L., Gilson, M.K., Accelerated Poisson-Boltzmann Calculations for Static and Dynamic Systems (2002) J. Comput. Chem., 23, p. 1244
dc.relation.referencesWang, J., Luo, R., Assessment of Linear Finite-Difference Poisson-Boltzmann Solvers (2010) J. Comput. Chem., 31 (8), p. 1689
dc.relation.referencesWang, J., Cai, Q., Xiang, Y., Luo, R., Reducing Grid Dependence in Finite-Difference Poisson-Boltzmann Calculations (2012) J. Chem. Theory Comput., 8 (8), pp. 2741-2751
dc.relation.referencesCai, Q., Hsieh, M.-J., Wang, J., Luo, R., Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers (2010) J. Chem. Theory Comput., 6 (1), pp. 203-211
dc.relation.referencesBotello-Smith, W.M., Liu, X., Cai, Q., Li, Z., Zhao, H., Luo, R., Numerical Poisson-Boltzmann Model for Continuum Membrane Systems (2013) Chem. Phys. Lett., 555, p. 274
dc.relation.referencesGreene, D., Qi, R., Nguyen, R., Qiu, T., Luo, R., Heterogeneous Dielectric Implicit Membrane Model for the Calculation of MMPBSA Binding Free Energies (2019) J. Chem. Inf. Model., 59 (6), pp. 3041-3056
dc.relation.referencesXiao, L., Diao, J., Greene, D., Wang, J., Luo, R., A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins (2017) J. Chem. Theory Comput., 13 (7), pp. 3398-3412
dc.relation.referencesCallenberg, K.M., Choudhary, O.P., De Forest, G.L., Gohara, D.W., Baker, N.A., Grabe, M., APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane (2010) PLoS One, 5 (9), p. 12722
dc.relation.referencesGenheden, S., Luchko, T., Gusarov, S., Kovalenko, A., Ryde, U., An MM/3D-RISM Approach for Ligand Binding Affinities (2010) J. Phys. Chem. B, 114 (25), pp. 8505-8516
dc.relation.referencesLuchko, T., Gusarov, S., Roe, D.R., Simmerling, C., Case, D.A., Tuszynski, J., Kovalenko, A., Three-Dimensional Molecular Theory of Solvation Coupled with Molecular Dynamics in Amber (2010) J. Chem. Theory Comput., 6 (3), pp. 607-624
dc.relation.referencesYan, Y., Yang, M., Ji, C.G., Zhang, J.Z.H., Interaction Entropy for Computational Alanine Scanning (2017) J. Chem. Inf. Model., 57 (5), pp. 1112-1122
dc.relation.referencesZhong, S., Huang, K., Luo, S., Dong, S., Duan, L., Improving the Performance of the MM/PBSA and MM/GBSA Methods in Recognizing the Native Structure of the Bcl-2 Family Using the Interaction Entropy Method (2020) Phys. Chem. Chem. Phys., 22 (7), pp. 4240-4251
dc.relation.referencesHuang, K., Luo, S., Cong, Y., Zhong, S., Zhang, J.Z.H., Duan, L., An Accurate Free Energy Estimator: Based on MM/PBSA Combined with Interaction Entropy for Protein-Ligand Binding Affinity (2020) Nanoscale, 12 (19), pp. 10737-10750
dc.relation.referencesSpacková, N., Cheatham, T.E., Ryjácek, F., Lankas, F., Van Meervelt, L., Hobza, P., Sponer, J., Molecular Dynamics Simulations and Thermodynamics Analysis of DNA-Drug Complexes. Minor Groove Binding between 4′,6-Diamidino-2-Phenylindole and DNA Duplexes in Solution (2003) J. Am. Chem. Soc., 125 (7), pp. 1759-1769
dc.relation.referencesCheca, A., Ortiz, A.R., De Pascual-Teresa, B., Gago, F., Assessment of Solvation Effects on Calculated Binding Affinity Differences: Trypsin Inhibition by Flavonoids as a Model System for Congeneric Series (1997) J. Med. Chem., 40 (25), pp. 4136-4145
dc.relation.referencesSun, Z., Yan, Y.N., Yang, M., Zhang, J.Z.H., Interaction Entropy for Protein-Protein Binding (2017) J. Chem. Phys., 146 (12), p. 124124
dc.relation.referencesSchrödinger, L., (2019) The PyMOL Molecular Graphics System, , Version 2.3.4
dc.relation.referencesDalcin, L.D., Paz, R.R., Kler, P.A., Cosimo, A., Parallel Distributed Computing Using Python (2011) Adv. Water Resour., 34 (9), pp. 1124-1139
dc.relation.referencesFujinaga, M., Sielecki, A.R., Read, R.J., Ardelt, W., Laskowski, M., James, M.N.G., Crystal and Molecular Structures of the Complex of α-Chymotrypsin with Its Inhibitor Turkey Ovomucoid Third Domain at 1.8 Å Resolution (1987) J. Mol. Biol., 195 (2), pp. 397-418
dc.relation.referencesEkberg, V., Ryde, U., On the Use of Interaction Entropy and Related Methods to Estimate Binding Entropies (2021) J. Chem. Theory Comput., 17 (8), pp. 5379-5391
dc.relation.referencesPrasad, L., Waygood, E.B., Lee, J.S., Delbaere, L.T.J., The 2.5 Å Resolution Structure of the Jel42 Fab Fragment/HPr Complex (1998) J. Mol. Biol., 280 (5), pp. 829-845
dc.relation.referencesJankauskaitė, J., Jiménez-García, B., Dapkū Nas, J., Fernández-Recio, J., Moal, I.H., SKEMPI 2.0: An Updated Benchmark of Changes in Protein-Protein Binding Energy, Kinetics and Thermodynamics upon Mutation (2019) Bioinformatics, 35 (3), pp. 462-469
dc.relation.referencesKabat, E.A., (1991) Sequences of Proteins of Immunological Interest, , U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health: Bethesda, MD
dc.relation.referencesPrasad, L., Sharma, S., Vandonselaar, M., Quail, J.W., Lee, J.S., Waygood, E.B., Wilson, K.S., Delbaere, L.T.J., Evaluation of Mutagenesis for Epitope Mapping. Structure of an Antibody- Protein Antigen Complex (1993) J. Biol. Chem., 268 (15), pp. 10705-10708
dc.relation.referencesKostlánová, N., Mitchell, E.P., Lortat-Jacob, H., Oscarson, S., Lahmann, M., Gilboa-Garber, N., Chambat, G., Imberty, A., The Fucose-Binding Lectin from Ralstonia Solanacearum: A New Type of β-Propeller Architecture Formed by Oligomerization and Interacting with Fucoside, Fucosyllactose, and Plant Xyloglucan (2005) J. Biol. Chem., 280 (30), pp. 27839-27849
dc.relation.referencesWimmerová, M., Kozmon, S., Nečasová, I., Mishra, S.K., Komárek, J., Koča, J., Stacking Interactions between Carbohydrate and Protein Quantified by Combination of Theoretical and Experimental Methods (2012) PLoS One, 7 (10), p. 46032
dc.relation.referencesMishra, S.K., Koča, J., Assessing the Performance of MM/PBSA, MM/GBSA, and QM-MM/GBSA Approaches on Protein/Carbohydrate Complexes: Effect of Implicit Solvent Models, QM Methods, and Entropic Contributions (2018) J. Phys. Chem. B, 122 (34), pp. 8113-8121
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem