Show simple item record

dc.contributor.authorCortés-Borda D
dc.contributor.authorPolanco J.-A
dc.contributor.authorEscobar-Sierra M.
dc.date.accessioned2022-09-14T14:33:48Z
dc.date.available2022-09-14T14:33:48Z
dc.date.created2021
dc.identifier.isbn9781784664237
dc.identifier.issn1746448X
dc.identifier.urihttp://hdl.handle.net/11407/7480
dc.descriptionWhen it comes to sustainability, watersheds and hydropower firms must be conceived as a whole. Namely, hydropower dams impact the three dimensions of sustainability of watersheds, while dams’ lifetime is lowered by unsustainable practices taking place in the watersheds. Management of hydropower firms aiming at sustainability might ensure the long-term use of dams without compromising ecosystems and society’s welfare. We aim to assess the impact of management efforts of a large hydropower firm on the sustainability of the influenced watersheds from the perceptions of society. We build on survey data assessing the social perception of the impacts caused by a large hydropower plants operation; and the firm’s management efforts aiming at sustainability. To this end, we perform a stepwise multilinear regression of ad-hoc impact management indices (independent variables) and impact indices (dependent variables). Data comprises more than 600 surveys from community, policymakers and industry, from two watersheds in Colombian Andes. Results revealed a positive correlation between all the impact indices and the management indices concerning environment and economy-society. The remaining management indices showed no (or low) correlation with impacts. Findings suggest that, despite firm’s sustainability awareness, society perceives low positive impact in due to (what they consider) firm’s few impact management efforts in environmental indices (i.e., erosion and deforestation) and socio-economic indices (i.e., income alternatives in agriculture, fisheries and tourism activities). Other efforts are not perceived as (positive or negative) consequences of the impact. Correlation results provided valuable information, for scholars and practitioners, on the interaction of dams and watersheds. On one hand, the theoretical implications showed how a holistic approach of sustainability is needed to better understand the complexity of this relationship. On the other, the management implications gave insights on how a large hydropower plant can operate in the long term while causing a positive impact on ecosystems and the local society. © 2021 WIT Press.eng
dc.language.isoeng
dc.publisherWITPress
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85112186307&doi=10.2495%2fWS210031&partnerID=40&md5=492d0975bf713dff275ab0cdf0122d98
dc.sourceWIT Transactions on Ecology and the Environment
dc.titleHow management efforts of a large hydropower firm impact sustainability in the Colombian Andes: A multivariate analysis of society’s perceptions
dc.typeConference Paper
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programAdministración de Empresas
dc.type.spaDocumento de conferencia
dc.identifier.doi10.2495/WS210031
dc.subject.keywordEnvironmental impacteng
dc.subject.keywordHydropowereng
dc.subject.keywordSocial impacteng
dc.subject.keywordSocial perceptioneng
dc.subject.keywordStepwise regressioneng
dc.subject.keywordSustainabilityeng
dc.subject.keywordWatershedeng
dc.relation.citationvolume251
dc.relation.citationstartpage23
dc.relation.citationendpage35
dc.publisher.facultyFacultad de Ciencias Económicas y Administrativas
dc.affiliationCortés-Borda, D., Faculty of Economic and Administrative Sciences, University of Medellin, Colombia
dc.affiliationPolanco, J.-A., Faculty of Economic and Administrative Sciences, University of Medellin, Colombia
dc.affiliationEscobar-Sierra, M., Faculty of Economic and Administrative Sciences, University of Medellin, Colombia
dc.relation.references(2020) Hydropower, , https://www.iea.org/reports/hydropower, IEA: Paris
dc.relation.referencesBartle, A., Hydropower potential and development activities (2002) Energy Policy, 30 (14), pp. 1231-1239
dc.relation.referencesRehman, S., Al-Hadhrami, L.M., Alam, M.M., Pumped hydro energy storage system: A technological review (2015) Renew. Sustain. Energy Rev., 44, pp. 586-598
dc.relation.referencesMeng, Y., Liu, J., Wang, Z., Mao, G., Wang, K., Yang, H., Undermined co-benefits of hydropower and irrigation under climate change (2021) Resour. Conserv. Recycl., 167
dc.relation.referencesMeng, Y., Hydropower production benefits more from 1.5°C than 2°C climate scenario (2020) Water Resour. Res., 56 (5)
dc.relation.referencesZhou, Y., A comprehensive view of global potential for hydro-generated electricity (2015) Energy Environ. Sci., 8 (9), pp. 2622-2633
dc.relation.referencesShaktawat, A., Vadhera, S., Risk management of hydropower projects for sustainable development: A review (2021) Environ. Dev. Sustain., 23 (1), pp. 45-76
dc.relation.referencesNgor, P.B., Lek, S., McCann, K.S., Hogan, Z.S., Dams threaten world’s largest inland fishery (2018) Nature, 563 (7730), p. 184
dc.relation.referencesGomby, G., Sand in demand: Trapped behind dams (2017) Science, 358 (6360), p. 180
dc.relation.referencesPoff, N.L., Olden, J.D., Can dams be designed for sustainability? (2017) Science, 358 (6368), pp. 1252-1253
dc.relation.referencesMoran, E.F., Lopez, M.C., Moore, N., Müller, N., Hyndman, D.W., Sustainable hydropower in the 21st century (2018) Proc. Natl. Acad. Sci. U.S.A., 115 (47), pp. 11891-11898
dc.relation.referencesYoshida, Y., Impacts of mainstream hydropower dams on fisheries and agriculture in lower Mekong basin (2020) Sustainability (Switzerland), 12 (6), p. 2408
dc.relation.referencesZarfl, C., Lumsdon, A.E., Berlekamp, J., Tydecks, L., Tockner, K., A global boom in hydropower dam construction (2015) Aquat. Sci., 77 (1), pp. 161-170
dc.relation.referencesWinemiller, K.O., Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong (2016) Science, 351 (6269), pp. 128-129
dc.relation.referencesPérez-Rincón, M., Vargas-Morales, J., Martinez-Alier, J., Mapping and analyzing ecological distribution conflicts in Andean countries (2019) Ecol. Econ., 157, pp. 80-91
dc.relation.referencesMartínez, V., Castillo, O.L., The political ecology of hydropower: Social justice and conflict in Colombian hydroelectricity development (2016) Energy Res. Soc. Sci., 22, pp. 69-78
dc.relation.referencesDel Bene, D., Scheidel, A., Temper, L., More dams, more violence? A global analysis on resistances and repression around conflictive dams through co-produced knowledge (2018) Sustain. Sci., 13 (3), pp. 617-633
dc.relation.referencesDuarte-Abadía, B., Boelens, R., Roa-Avendaño, T., Hydropower, encroachment and the re-patterning of hydrosocial territory: The case of hidrosogamoso in Colombia (2015) Hum. Organ., 74 (3), pp. 243-254
dc.relation.referencesFiner, M., Jenkins, C.N., Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity (2012) PLoS One, 7 (4)
dc.relation.referencesPolanco, J.A., Exploring governance for sustainability in contexts of violence: The case of the hydropower industry in Colombia (2018) Energy Sustain. Soc., 8 (1), pp. 1-15
dc.relation.referencesHidalgo-Bastidas, J., Boelens, R., Hydraulic order and the politics of the governed: The baba dam in coastal Ecuador (2019) Water, 11 (3), p. 409
dc.relation.referencesCaceres, A.L., Jaramillo, P., Matthews, H.S., Samaras, C., Nijssen, B., Hydropower under climate uncertainty: Characterizing the usable capacity of Brazilian, Colombian and Peruvian power plants under climate scenarios (2021) Energy Sustain. Dev., 61, pp. 217-229
dc.relation.referencesHenao, F., Viteri, J.P., Rodríguez, Y., Gómez, J., Dyner, I., Annual and interannual complementarities of renewable energy sources in Colombia (2020) Renew. Sustain. Energy Rev., 134
dc.relation.referencesRay, P.A., Multidimensional stress test for hydropower investments facing climate, geophysical and financial uncertainty (2018) Glob. Environ. Chang., 48, pp. 168-181
dc.relation.referencesSong, C., O’Malley, A., Zydlewski, J., Mo, W., Balancing fish-energy-cost tradeoffs through strategic basin-wide dam management (2020) Resour. Conserv. Recycl., 161
dc.relation.referencesSiri, R., Mondal, S.R., Das, S., HydroPower: A renewable energy resource for sustainability in terms of climate change and environmental protection (2020) Alternative Energy Resources. The Handbook of Environmental Chemistry, 99, pp. 93-113. , Pathak & R.R. Srivastava, Springer: Cham
dc.relation.referencesLiden, R., Specialist, H., Lyon, K., (2014) The Hydropower Sustainability Assessment Protocol for Use by World Bank Clients: Lessons Learned and Recommendations, , World Bank: Washington, DC, Jun
dc.relation.referencesChen, S., Chen, B., Fath, B.D., Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model (2015) Renew. Sustain. Energy Rev., 42, pp. 78-92
dc.relation.references(2007) Dams and Development: Relevant Practices for Improved Decision-Making: A Compendium of Relevant Practices for Improved Decision-Making on Dams and Their Alternatives, , UNEP-DDP Secretariat: Nairobi
dc.relation.referencesNautiyal, H., Goel, V., Sustainability assessment of hydropower projects (2020) J. Clean. Prod., 265
dc.relation.referencesChoudhury, N.B., Dey Choudhury, S.R., Implications for planning of hydroelectric projects in Northeast India: An analysis of the impacts of the Tipaimukh project (2020) GeoJournal, pp. 1-21
dc.relation.referencesHuđek, H., Žganec, K., Pusch, M.T., A review of hydropower dams in Southeast Europe – Distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea (2020) Renew. Sustain. Energy Rev., 117, p. 109434
dc.relation.referencesHydropower Sustainability Tools, , https://www.hydrosustainability.org/assessment-protocol
dc.relation.referencesWang, C., (2012) A Guide for Local Benefit Sharing in Hydropower Projects, , World Bank: Washington, DC
dc.relation.referencesJiménez-Inchima, I., Polanco, J.A., Escobar-Sierra, M., Good living of communities and sustainability of the hydropower business: Mapping an operational framework for benefit sharing (2021) Energy Sustain. Soc., 11 (1), p. 9
dc.relation.referencesPolanco, J.A., Ramírez Atehortúa, F.H., (2017) Evaluación De La Sostenibilidad En Empresas De Energía: Una Investigación Aplicada A Centrales De Generación Hidroeléctrica, , Universidad de Medellín
dc.relation.referencesHydropower Status Report, , https://www.hydropower.org/publications/2016-hydropower-status-report
dc.relation.referencesQuiceno, G., Scenario analysis for strategy design: A case study of the Colombian electricity industry (2019) Energy Strateg. Rev., 23, pp. 57-68
dc.relation.referencesSierra, M.C., Ramos, J., Jurado, D., Herrera, J.D., Practical solutions to geotechnical problems related to Ituango hydropower tunnels, Colombia (2019) Tunnels and Underground Cities: Engineering and Innovation Meet Archaeology, Architecture and Art – Proceedings of the WTC 2019 ITA-AITES World Tunnel Congress, pp. 1144-1152
dc.relation.referencesPérez-Rincón, M., Vargas-Morales, J., Crespo-Marín, Z., Trends in social metabolism and environmental conflicts in four Andean countries from 1970 to 2013 (2018) Sustain. Sci., 13 (3), pp. 635-648
dc.relation.referencesCernea, M.M., (1997) Hydropower Dams and Social Impacts: A Sociological Perspective (English), , Environment Department Working Papers
dc.relation.references44, Social Assessment Series
dc.relation.referencesSocial Development Papers
dc.relation.referencesSDP 16, World Bank Group: Washington, D.C
dc.relation.referencesLindgreen, A., Córdoba, J.-R., Maon, F., Mendoza, J.M., Corporate social responsibility in Colombia: Making sense of social strategies (2010) J. Bus. Ethics, 91 (2), pp. 229-242
dc.relation.referencesPolanco, J.A., The group EPM social responsibility: A new political stance against the territory (2014) Cuad. Adm., 27 (49), pp. 65-86
dc.relation.referencesDuque Grisales, E.A., The clean development mechanism as a means to assess the Kyoto protocol in Colombia (2017) Int. J. Renew. Energy Res. IJRER, 7 (3)
dc.relation.referencesDel Río, D.A., Moffett, H., Nieto-Londoño, C., Vásquez, R.E., Escudero-Atehortúa, A., Chivor’s Life Extension Project (CLEP): From sediment management to development of a new intake system (2020) Water, 12 (10), p. 2743
dc.relation.referencesDel Río, D.A., Moffett, H., Nieto-Londoño, C., Vásquez, R.E., Escudero-Atehortúa, A., (2020) Extending Life Expectancy of La Esmeralda Reservoir: A Bet to Support Colombia’s Future Energy Demand, , American Society of Mechanical Engineers, Power Division (Publication) POWER
dc.relation.referencesBotero, B.A., Parra, J.C., Otálvaro, M., Effect of population dynamics and land use on the contribution of sediments to reservoirs for hydropower generation (2019) WIT Trans. Ecol. Environ., 239, pp. 35-46
dc.relation.referencesRodríguez-De-Francisco, J.C., Duarte-Abadía, B., Boelens, R., Payment for ecosystem services and the water-energy-food nexus: Securing resource flows for the affluent? (2019) Water, 11 (6), p. 1143
dc.relation.referencesRoa-García, M.C., Brown, S., Assessing equity and sustainability of water allocation in Colombia (2017) Local Environ, 22 (9), pp. 1080-1104
dc.relation.referencesSierra, R.G., Sarmiento, Á.Z., New advances in decision making theory under uncertainty and its application in mega projects of hydropower (2016) World Trans. Eng. Tech. Edu., 14 (2)
dc.relation.referencesPolanco, J.A., Ramírez-Atehortúa, F.H., Montes-Gómez, L.F., Botero-Hernández, B.A., Barco, M.O., Effect of sediment management decision on a hydropower plant value (2020) Dyna. Rev. Fac. Nac. Minas, 87 (213), pp. 232-240
dc.relation.referencesLütjohann, H., The stepwise regression algorithm seen from the statistician’s point of view (1970) Metr. Int. J. Theor. Appl. Stat., 15 (1), pp. 110-125
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín
dc.relation.ispartofconference6th International Conference on Water and Society, WS 2021


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record