Mostrar el registro sencillo del ítem

dc.contributor.authorÅhlén I
dc.contributor.authorVigouroux G
dc.contributor.authorDestouni G
dc.contributor.authorPietroń J
dc.contributor.authorGhajarnia N
dc.contributor.authorAnaya J
dc.contributor.authorBlanco J
dc.contributor.authorBorja S
dc.contributor.authorChalov S
dc.contributor.authorChun K.P
dc.contributor.authorClerici N
dc.contributor.authorDesormeaux A
dc.contributor.authorGirard P
dc.contributor.authorGorelits O
dc.contributor.authorHansen A
dc.contributor.authorJaramillo F
dc.contributor.authorKalantari Z
dc.contributor.authorLabbaci A
dc.contributor.authorLicero-Villanueva L
dc.contributor.authorLivsey J
dc.contributor.authorManeas G
dc.contributor.authorPisarello K.L.M.C
dc.contributor.authorPahani D.M
dc.contributor.authorPalomino-Ángel S
dc.contributor.authorPrice R
dc.contributor.authorRicaurte-Villota C
dc.contributor.authorFernanda Ricaurte L
dc.contributor.authorRivera-Monroy V.H
dc.contributor.authorRodriguez A
dc.contributor.authorRodriguez E
dc.contributor.authorSalgado J
dc.contributor.authorSannel B
dc.contributor.authorSeifollahi-Aghmiuni S
dc.contributor.authorSimard M
dc.contributor.authorSjöberg Y
dc.contributor.authorTerskii P
dc.contributor.authorThorslund J
dc.contributor.authorZamora D.A
dc.contributor.authorJarsjö J.
dc.date.accessioned2022-09-14T14:33:48Z
dc.date.available2022-09-14T14:33:48Z
dc.date.created2021
dc.identifier.issn20452322
dc.identifier.urihttp://hdl.handle.net/11407/7482
dc.descriptionAssessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976–2015 in 25 wetlandscapes distributed across the world’s tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world’s land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes. © 2021, The Author(s).eng
dc.language.isoeng
dc.publisherNature Research
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85100244720&doi=10.1038%2fs41598-021-81137-3&partnerID=40&md5=5c8401f897dca2bce6e3a2299803d392
dc.sourceScientific Reports
dc.titleHydro-climatic changes of wetlandscapes across the world
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1038/s41598-021-81137-3
dc.relation.citationvolume11
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationÅhlén, I., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden
dc.affiliationVigouroux, G., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden
dc.affiliationDestouni, G., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden
dc.affiliationPietroń, J., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden, WSP Sverige AB, Ullevigatan 19, Gothenburg, 411 40, Sweden
dc.affiliationGhajarnia, N., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden
dc.affiliationAnaya, J., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 30-65, Medellín, 050026, Colombia
dc.affiliationBlanco, J., Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, 050010, Colombia
dc.affiliationBorja, S., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden
dc.affiliationChalov, S., Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
dc.affiliationChun, K.P., Department of Geography, Hong Kong Baptist University, Hong Kong
dc.affiliationClerici, N., Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, DC 13409, Colombia
dc.affiliationDesormeaux, A., School of Natural Resources and Environment, University of Florida, Gainesville, FL 32603, United States
dc.affiliationGirard, P., Centro de Pesquisa do Pantanal and BioScience Institute, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
dc.affiliationGorelits, O., Zubov State Oceanographic Institute, Moscow, 119034, Russian Federation
dc.affiliationHansen, A., Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, KS 66045, United States
dc.affiliationJaramillo, F., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden, Baltic Sea Centre, Stockholm, 10691, Sweden
dc.affiliationKalantari, Z., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden
dc.affiliationLabbaci, A., Department of Geology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
dc.affiliationLicero-Villanueva, L., Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17489, Germany
dc.affiliationLivsey, J., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden
dc.affiliationManeas, G., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden, Navarino Environmental Observatory, Messinia, 24 001, Greece
dc.affiliationPisarello, K.L.M.C., Department of Soil and Water Sciences, University of Florida, Gainesville, FL 32611, United States
dc.affiliationPahani, D.M., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden
dc.affiliationPalomino-Ángel, S., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 30-65, Medellín, 050026, Colombia, Facultad de Ingeniería, Universidad de San Buenaventura, Carrera 56C N° 51–110, Medellín, 050010, Colombia
dc.affiliationPrice, R., Department of Earth and Environment, Southeast Environmental Research Center, Florida International University, Miami, FL 33199, United States
dc.affiliationRicaurte-Villota, C., Instituto de investigaciones marinas y costeras de Colombia “José Benito Vives de Andreis”—INVEMAR, Santa Marta, 470006, Colombia
dc.affiliationFernanda Ricaurte, L., Alexander von Humboldt Biological Resources Research Institute, Calle 28 A No. 15-09, Bogotá, DC 70803, Colombia
dc.affiliationRivera-Monroy, V.H., Alexander von Humboldt Biological Resources Research Institute, Calle 28 A No. 15-09, Bogotá, DC 70803, Colombia
dc.affiliationRodriguez, A., Instituto de investigaciones marinas y costeras de Colombia “José Benito Vives de Andreis”—INVEMAR, Santa Marta, 470006, Colombia
dc.affiliationRodriguez, E., Civil and Agricultural Engineering Department, Universidad Nacional de Colombia, Bogotá, 11001, Colombia
dc.affiliationSalgado, J., Departamento de Ciencias Biológicas, Universidad de Los Andes, Cra. 1 No. 18A-12, Bogotá, 111711, Colombia, Facultad de Ingeniería, Universidad Católica de Colombia, Av. Caracas No. 46-72, Bogotá, 111311, Colombia
dc.affiliationSannel, B., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden
dc.affiliationSeifollahi-Aghmiuni, S., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden
dc.affiliationSimard, M., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
dc.affiliationSjöberg, Y., Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
dc.affiliationTerskii, P., Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
dc.affiliationThorslund, J., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden, Department of Physical Geography, Utrecht University, Utrecht, Netherlands
dc.affiliationZamora, D.A., Civil and Agricultural Engineering Department, Universidad Nacional de Colombia, Bogotá, 11001, Colombia
dc.affiliationJarsjö, J., Department of Physical Geography and Bolin Center for Climate Research, Stockholm University, Stockholm, 10691, Sweden
dc.relation.referencesMitsch, W.J., Gosselink, J.G., (2015) Wetlands [Elektronisk Resurs], , Wiley, Hoboken
dc.relation.referencesSieben, E.J.J., Khubeka, S.P., Sithole, S., Job, N.M., Kotze, D.C., The classification of wetlands: Integration of top-down and bottom-up approaches and their significance for ecosystem service determination (2018) Wetl. Ecol. Manage., 26, pp. 441-458
dc.relation.referencesSeifollahi-Aghmiuni, S., Nockrach, M., Kalantari, Z., The potential of wetlands in achieving the sustainable development goals of the 2030 Agenda (2019) Water, 11, p. 609
dc.relation.referencesJaramillo, F., Priorities and interactions of sustainable development goals (SDGs) with focus on wetlands (2019) Water, 11, p. 619
dc.relation.referencesThorslund, J., Solute evidence for hydrological connectivity of geographically isolated wetlands (2018) Land Degrad. Dev., 29, pp. 3954-3962
dc.relation.referencesQuin, A., Jaramillo, F., Destouni, G., Dissecting the ecosystem service of large-scale pollutant retention: The role of wetlands and other landscape features (2015) Ambio, 44, pp. 127-137
dc.relation.referencesThorslund, J., Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management (2017) Ecol. Eng., 108, pp. 489-497
dc.relation.referencesÅhlén, I., Wetlandscape size thresholds for ecosystem service delivery: Evidence from the Norrström drainage basin, Sweden (2020) Sci. Total Environ., 704, p. 135452
dc.relation.referencesMoomaw, W.R., Wetlands in a changing climate: Science, policy and management (2018) Wetlands, 38, pp. 183-205
dc.relation.referencesErwin, K.L., Wetlands and global climate change: The role of wetland restoration in a changing world (2008) Wetl. Ecol. Manage., 17, p. 71
dc.relation.referencesJaramillo, F., Prieto, C., Lyon, S.W., Destouni, G., Multimethod assessment of evapotranspiration shifts due to non-irrigated agricultural development in Sweden (2013) J. Hydrol., 484, pp. 55-62
dc.relation.referencesBring, A., Implications of freshwater flux data from the CMIP5 multimodel output across a set of Northern Hemisphere drainage basins: Implications of freshwater flux data from the CMIP5 multimodel output across (2015) Earths Future, 3, pp. 206-217
dc.relation.referencesJarsjö, J., Asokan, S.M., Prieto, C., Bring, A., Destouni, G., Hydrological responses to climate change conditioned by historic alterations of land-use and water-use (2012) Hydrol. Earth Syst. Sci., 16, pp. 1335-1347
dc.relation.referencesMoor, H., Hylander, K., Norberg, J., Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits (2015) Ambio, 44, pp. 113-126
dc.relation.referencesJaramillo, F., Effects of hydroclimatic change and rehabilitation activities on salinity and mangroves in the Ciénaga Grande de Santa Marta, Colombia (2018) Wetlands, 38, pp. 755-767
dc.relation.referencesJarsjö, J., Projecting impacts of climate change on metal mobilization at contaminated sites: Controls by the groundwater level (2020) Sci. Total Environ., 712, p. 135560
dc.relation.referencesGhajarnia, N., Wetlandscape change information database (WetCID) (2019) Earth Syst. Sci. Data, 12 (2), p. 1083
dc.relation.referencesKarlsson, J.M., Jaramillo, F., Destouni, G., Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas (2015) J. Hydrol., 529, pp. 134-145
dc.relation.referencesHofstede, R.G.M., Effects of livestock farming and recommendations for management and conservation of páramo grasslands (Colombia) (1995) Land Degrad. Dev., 6, pp. 133-147
dc.relation.referencesAgudelo, C., Fernanda, M., (2019) Ecohydrology of Paramos in Colombia: Vulnerability to Climate Change and Land Use, , Universidad Nacional de Colombia, Medellín
dc.relation.referencesFallah, M., Zamani-Ahmadmahmoodi, R., Assessment of water quality in Iran’s Anzali Wetland, using qualitative indices from 1985, 2007, and 2014 (2017) Wetl. Ecol. Manage., 25, pp. 597-605. , COI: 1:CAS:528:DC%2BC2sXjsVKgt7s%3D
dc.relation.referencesKhazaei, B., Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy (2019) J. Hydrol., 569, pp. 203-217
dc.relation.referencesShibuo, Y., Jarsjö, J., Destouni, G., Hydrological responses to climate change and irrigation in the Aral Sea drainage basin (2007) Geophys. Res. Lett.
dc.relation.referencesJarsjö, J., Törnqvist, R., Su, Y., Climate-driven change of nitrogen retention–attenuation near irrigated fields: Multi-model projections for Central Asia (2017) Environ. Earth Sci., 76, p. 117
dc.relation.referencesMarjani, A., Jamali, M., Role of exchange flow in salt water balance of Urmia Lake (2014) Dyn. Atmos. Oceans, 65, pp. 1-16
dc.relation.referencesTörnqvist, R., Evolution of the hydro-climate system in the Lake Baikal basin (2014) J. Hydrol., 519, pp. 1953-1962
dc.relation.referencesPietroń, J., Sedimentation patterns in the Selenga River delta under changing hydroclimatic conditions (2018) Hydrol. Process., 32, pp. 278-292
dc.relation.referencesFoufoula-Georgiou, E., Takbiri, Z., Czuba, J.A., Schwenk, J., The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions (2015) Water Resour. Res., 51, pp. 6649-6671
dc.relation.referencesMeter, K.J.V., Basu, N.B., Signatures of human impact: Size distributions and spatial organization of wetlands in the Prairie Pothole landscape (2015) Ecol. Appl., 25, pp. 451-465
dc.relation.referencesMcCartney, M., Morardet, S., Rebelo, L.-M., Finlayson, C.M., Masiyandima, M., A study of wetland hydrology and ecosystem service provision: GaMampa wetland, South Africa (2011) Hydrol. Sci. J., 56, pp. 1452-1466
dc.relation.referencesWolf, K.L., Noe, G.B., Ahn, C., Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands (2013) J. Environ. Qual., 42, pp. 1245-1255. , COI: 1:CAS:528:DC%2BC3sXhtFOjsL3F
dc.relation.referencesKasimov, N., Karthe, D., Chalov, S., Environmental change in the Selenga River—Lake Baikal Basin (2017) Reg. Environ. Change, 17, pp. 1945-1949
dc.relation.referencesKottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., World Map of the Köppen-Geiger climate classification updated (2006) Meteorol. Z., 15, pp. 259-263
dc.relation.referencesGhajarnia, N., Data for wetlandscapes and their changes around the world (2020) Earth Syst. Sci. Data, 12, pp. 1083-1100
dc.relation.referencesHarris, I., Osborn, T.J., Jones, P., Lister, D., Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset (2020) Sci. Data, 7, p. 109
dc.relation.referencesBudyko, M.I., Miller, D.H., (1974) Climate and Life, , Academic Press, New York
dc.relation.referencesRoderick, M.L., Farquhar, G.D., A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties (2011) Water Resour. Res.
dc.relation.referencesYang, H., Yang, D., Lei, Z., Sun, F., New analytical derivation of the mean annual water-energy balance equation (2008) Water Resour. Res.
dc.relation.referencesZhang, D., Cong, Z., Ni, G., Yang, D., Hu, S., Effects of snow ratio on annual runoff within the Budyko framework (2015) Hydrol. Earth Syst. Sci., 19, pp. 1977-1992
dc.relation.referencesWen, X., Tang, G., Wang, S., Huang, J., Comparison of global mean temperature series (2011) Adv. Clim. Change Res., 2, pp. 187-192
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem