Mostrar el registro sencillo del ítem

dc.contributor.authorHerweg B
dc.contributor.authorNellaiyappan M
dc.contributor.authorWelter-Frost A.M
dc.contributor.authorTran T
dc.contributor.authorMabry G
dc.contributor.authorWeston K
dc.contributor.authorTobón C
dc.contributor.authorSaiz J
dc.contributor.authorNoujaim S
dc.contributor.authorWeston M.W.
dc.date.accessioned2022-09-14T14:33:49Z
dc.date.available2022-09-14T14:33:49Z
dc.date.created2021
dc.identifier.issn19413149
dc.identifier.urihttp://hdl.handle.net/11407/7486
dc.descriptionBackground: The formation of recipient-to donor atrio-atrial connections (AAC) in patients after orthotopic heart transplantation (OHT) is poorly understood. We sought to investigate the mechanisms of atrial tachyarrhythmias after OHT, the role of AACs, and their relationship to the immunologic match. Methods: In a large series of OHT patients, we performed a retrospective review of 42 patients who underwent catheter ablation for atrial arrhythmias. A realistic 3-dimensional computer model of human atria was used to study AAC conductivity. Results: Patient age was 55±15 years (71% male). Biatrial anastomosis was present in 24/42 patients (57%). An AAC was found in 9/42 patients (21%, right-sided in 5 patients with biatrial anastomosis, left-sided in 4 patients). The AAC became apparent at the time of the electrophysiology study 10.1±7.6 years after OHT (range, 0.3-22.2 years). Donor-specific antibodies were present in no patient with AAC but were present in 69% of patients without AAC, P=0.002. In all patients with AAC, a recipient atrial tachycardia propagated via AAC to the donor atrium (4 patients presented with atrial fibrillation). Simulations showed AAC conduction requires an isthmus of ≥2 mm and is cycle length and location dependent. Patients without AAC (n=13) frequently presented with donor atrial arrhythmias, in 77% cavo-tricuspid isthmus flutter was ablated. The procedural success was high, although, 12 patients (29%) required reablation. Conclusions: AACs are found in 21% of OHT patients with atrial tachyarrhythmias and can manifest very early after OHT. Immune privilege characterized by the absence of donor-specific antibodies may facilitate AAC formation. Propagation across an AAC is width, cycle length, and location dependent. Patients with AAC present with focal atrial tachycardias or atrial fibrillation originating from the recipient atria; patients without most frequently present with cavo-tricuspid isthmus dependent atrial flutter. While multiple arrhythmias frequently require reablation, ablative therapy is highly effective. Graphic Abstract: A graphic abstract is available for this article. © 2021 American Heart Association, Inc.eng
dc.language.isoeng
dc.publisherLippincott Williams and Wilkins
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85104626921&doi=10.1161%2fCIRCEP.120.008751&partnerID=40&md5=42dee4cbc3bd427accda6f41fa650d2c
dc.sourceCirculation: Arrhythmia and Electrophysiology
dc.titleImmuno-Electrophysiological Mechanisms of Functional Electrical Connections between Recipient and Donor Heart in Patients with Orthotopic Heart Transplantation Presenting with Atrial Arrhythmias
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1161/CIRCEP.120.008751
dc.subject.keywordAtrial fibrillationeng
dc.subject.keywordCatheter ablationeng
dc.subject.keywordElectrophysiologyeng
dc.subject.keywordHeart transplantationeng
dc.subject.keywordTachycardiaeng
dc.relation.citationstartpage412
dc.relation.citationendpage423
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationHerweg, B., Department of Cardiovascular Sciences, University of South Florida, Morsani College of Medicine, United States, Tampa General HospitalFL, United States
dc.affiliationNellaiyappan, M., Department of Cardiovascular Sciences, University of South Florida, Morsani College of Medicine, United States
dc.affiliationWelter-Frost, A.M., Department of Cardiovascular Sciences, University of South Florida, Morsani College of Medicine, United States
dc.affiliationTran, T., Department of Cardiovascular Sciences, University of South Florida, Morsani College of Medicine, United States, Tampa General HospitalFL, United States
dc.affiliationMabry, G., Department of Cardiovascular Sciences, University of South Florida, Morsani College of Medicine, United States
dc.affiliationWeston, K., Department of Cardiovascular Sciences, University of South Florida, Morsani College of Medicine, United States
dc.affiliationTobón, C., Nanostructured Materials and Bio-modeling (MATBIOM), Universidad de Medellín, Colombia
dc.affiliationSaiz, J., Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, Spain
dc.affiliationNoujaim, S., Department of Cardiovascular Sciences, University of South Florida, Morsani College of Medicine, United States, Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, United States
dc.affiliationWeston, M.W., Department of Cardiovascular Sciences, University of South Florida, Morsani College of Medicine, United States, Tampa General HospitalFL, United States
dc.relation.referencesJacquet, L, Ziady, G, Stein, K, Griffith, B, Armitage, J, Hardesty, R, Kormos, R, Cardiac rhythm disturbances early after orthotopic heart transplantation: prevalence and clinical importance of the observed abnormalities (1990) J Am Coll Cardiol, 16, pp. 832-837
dc.relation.referencesVaseghi, M, Boyle, NG, Kedia, R, Patel, JK, Cesario, DA, Wiener, I, Kobashigawa, JA, Shivkumar, K, Supraventricular tachycardia after orthotopic cardiac transplantation (2008) J Am Coll Cardiol, 51, pp. 2241-2249
dc.relation.referencesCohn, WE, Gregoric, ID, Radovancevic, B, Wolf, RK, Frazier, OH, Atrial fibrillation after cardiac transplantation: experience in 498 consecutive cases (2008) Ann Thorac Surg, 85, pp. 56-58
dc.relation.referencesKhan, M, Kalahasti, V, Rajagopal, V, Khaykin, Y, Wazni, O, Almahameed, S, Zuzek, R, Saliba, W, Incidence of atrial fibrillation in heart transplant patients: long-term follow-up (2006) J Cardiovasc Electrophysiol, 17, pp. 827-831
dc.relation.referencesPavri, BB, O'Nunain, SS, Newell, JB, Ruskin, JN, William, G, Prevalence and prognostic significance of atrial arrhythmias after orthotopic cardiac transplantation (1995) J Am Coll Cardiol, 25, pp. 1673-1680
dc.relation.referencesAhmari, SA, Bunch, TJ, Chandra, A, Chandra, V, Ujino, K, Daly, RC, Kushwaha, SS, Seward, JB, Prevalence, pathophysiology, and clinical significance of post-heart transplant atrial fibrillation and atrial flutter (2006) J Heart Lung Transplant, 25, pp. 53-60
dc.relation.referencesBexton, RS, Hellestrand, KJ, Cory-Pearce, R, Spurrell, RA, English, TA, Camm, AJ, Unusual atrial potentials in a cardiac transplant recipient. Possible synchronization between donor and recipient atria (1983) J Electrocardiol, 16, pp. 313-321
dc.relation.referencesAnselme, F, Saoudi, N, Redonnet, M, Letac, B, Atrioatrial conduction after orthotopic heart transplantation (1994) J Am Coll Cardiol, 24, pp. 185-189
dc.relation.referencesRothman, SA, Miller, JM, Hsia, HH, Buxton, AE, Radiofrequency ablation of a supraventricular tachycardia due to interatrial conduction from the recipient to donor atria in an orthotopic heart transplant recipient (1995) J Cardiovasc Electrophysiol, 6, pp. 544-550
dc.relation.referencesSaoudi, N, Redonnet, M, Anselme, F, Poty, H, Cribier, A, Catheter ablation of atrioatrial conduction as a cure for atrial arrhythmia after orthotopic heart transplantation (1998) J Am Coll Cardiol, 32, pp. 1048-1055
dc.relation.referencesLefroy, DC, Fang, JC, Stevenson, LW, Hartley, LH, Friedman, PL, Stevenson, WG, Recipient-to-donor atrioatrial conduction after orthotopic heart transplantation: surface electrocardiographic features and estimated prevalence (1998) Am J Cardiol, 82, pp. 444-450
dc.relation.referencesBirnie, D, Green, MS, Veinot, JP, Tang, AS, Davies, RA, Interatrial conduction of atrial tachycardia in heart transplant recipients: potential pathophysiology (2000) J Heart Lung Transplant, 19, pp. 1007-1010
dc.relation.referencesCourtemanche, M, Ramirez, RJ, Nattel, S, Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model (1998) Am J Physiol, 275, pp. H301-H321
dc.relation.referencesKneller, J, Zou, R, Vigmond, EJ, Wang, Z, Leon, LJ, Nattel, S, Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties (2002) Circ Res, 90, pp. E73-E87
dc.relation.referencesTobón, C, Ruiz-Villa, CA, Heidenreich, E, Romero, L, Hornero, F, Saiz, J, A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship (2013) PLoS One, 8, p. e50883
dc.relation.referencesHeidenreich, EA, Ferrero, JM, Doblaré, M, Rodríguez, JF, Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology (2010) Ann Biomed Eng, 38, pp. 2331-2345
dc.relation.referencesScott, CD, Dark, JH, McComb, JM, Arrhythmias after cardiac transplantation (1992) Am J Cardiol, 70, pp. 1061-1063
dc.relation.referencesBerke, DK, Graham, AF, Schroeder, JS, Harrison, DC, Arrhythmias in the denervated transplanted human heart (1973) Circulation, 47, pp. 112-115
dc.relation.referencesCaves, PK, Stinson, EB, Billingham, ME, Shumway, NE, Serial transvenous biopsy of the transplanted human heart. Improved management of acute rejection episodes (1974) Lancet, 1, pp. 821-826
dc.relation.referencesLittle, RE, Kay, N, Epstein, AE, Plumb, VJ, Bourge, RC, Neves, J, Jirklin, JK, Arrhythmias after orthoptic cardiac transplantation (1989) Circulation, 80, pp. 140-146. , suppl III
dc.relation.referencesNof, E, Stevenson, WG, Epstein, LM, Tedrow, UB, Koplan, BA, Catheter ablation of atrial arrhythmias after cardiac transplantation: findings at EP study utility of 3-D mapping and outcomes (2013) J Cardiovasc Electrophysiol, 24, pp. 498-502
dc.relation.referencesElsik, M, Teh, A, Ling, LH, Virdee, M, Parameshwar, J, Fynn, SP, Kistler, PM, Supraventricular arrhythmias late after orthotopic cardiac transplantation: electrocardiographic and electrophysiological characterization and radiofrequency ablation (2012) Europace, 14, pp. 1498-1505
dc.relation.referencesMouhoub, Y, Laredo, M, Varnous, S, Leprince, P, Waintraub, X, Gandjbakhch, E, Hebert, JL, Pavie, A, Catheter ablation of organized atrial arrhythmias in orthotopic heart transplantation (2018) J Heart Lung Transplant, 37, pp. 232-239
dc.relation.referencesJalife, J, Moe, GK, A biologic model of parasystole (1979) Am J Cardiol, 43, pp. 761-772
dc.relation.referencesDenfield, SW, Kearney, DL, Michael, L, Gittenberger-de Groot, A, Garson, A, Developmental differences in canine cardiac surgical scars (1993) Am Heart J, 126, pp. 382-389
dc.relation.referencesRazzouk, AJ, Gow, R, Finley, J, Murphy, D, Williams, WG, Surgically created Wolff-Parkinson-White syndrome after Fontan operation (1992) Ann Thorac Surg, 54, pp. 974-977
dc.relation.referencesMüller, P, Pfeiffer, P, Koglin, J, Schäfers, HJ, Seeland, U, Janzen, I, Urbschat, S, Böhm, M, Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts (2002) Circulation, 106, pp. 31-35
dc.relation.referencesMinami, E, Laflamme, MA, Saffitz, JE, Murry, CE, Extracardiac progenitor cells repopulate most major cell types in the transplanted human heart (2005) Circulation, 112, pp. 2951-2958
dc.relation.referencesQuaini, F, Urbanek, K, Beltrami, AP, Finato, N, Beltrami, CA, Nadal-Ginard, B, Kajstura, J, Anversa, P, Chimerism of the transplanted heart (2002) N Engl J Med, 346, pp. 5-15
dc.relation.referencesGlaser, R, Lu, MM, Narula, N, Epstein, JA, Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts (2002) Circulation, 106, pp. 17-19
dc.relation.referencesSimper, D, Wang, S, Deb, A, Holmes, D, McGregor, C, Frantz, R, Kushwaha, SS, Caplice, NM, Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis (2003) Circulation, 108, pp. 143-149
dc.relation.referencesIssa, F, Wood, KJ, CD4+ regulatory T cells in solid organ transplantation (2010) Curr Opin Organ Transplant, 15, pp. 757-764
dc.relation.referencesKingsley, CI, Karim, M, Bushell, AR, Wood, KJ, CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4-and IL-10-dependent immunoregulation of alloresponses (2002) J Immunol, 168, pp. 1080-1086
dc.relation.referencesPodestà, MA, Remuzzi, G, Casiraghi, F, Mesenchymal stromal cells for transplant tolerance (2019) Front Immunol, 10, p. 1287
dc.relation.referencesWood, KJ, Bushell, A, Hester, J, Regulatory immune cells in transplantation (2012) Nat Rev Immunol, 12, pp. 417-430
dc.relation.referencesHu, C, Wu, Z, Li, L, Mesenchymal stromal cells promote liver regeneration through regulation of immune cells (2020) Int J Biol Sci, 16, pp. 893-903
dc.relation.referencesValenzuela, NM, Reed, EF, Antibodies in transplantation: the effects of HLA and non-HLA antibody binding and mechanisms of injury (2013) Methods Mol Biol, 1034, pp. 41-70
dc.relation.referencesTambur, AR, Pamboukian, SV, Costanzo, MR, Herrera, ND, Dunlap, S, Montpetit, M, Heroux, A, The presence of HLA-directed antibodies after heart transplantation is associated with poor allograft outcome (2005) Transplantation, 80, pp. 1019-1025
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem