Show simple item record

dc.contributor.authorGalindez Y
dc.contributor.authorCorrea E
dc.contributor.authorZuleta A.A
dc.contributor.authorValencia-Escobar A
dc.contributor.authorCalderon D
dc.contributor.authorToro L
dc.contributor.authorChacón P
dc.contributor.authorEcheverría E F.
dc.date.accessioned2022-09-14T14:33:49Z
dc.date.available2022-09-14T14:33:49Z
dc.date.created2021
dc.identifier.issn15989623
dc.identifier.urihttp://hdl.handle.net/11407/7488
dc.descriptionAbstract: Powders of commercially pure magnesium (c.p. Mg), AZ91 magnesium alloy and zinc were milled using a high-energy mill. The effect of high energy milling (HEM) on powders morphology, chemical composition, crystallite size and compaction of different powders mixtures were studied. After compaction, samples were thermally treated at 450 °C and both density and hardness were evaluated. It was found that as milling speed and time increases, the AZ91 alloy and c.p. Mg particles were deformed and fractured up to sizes below 10 μm. X-ray diffraction patterns for both the c.p. Mg and the AZ91 powders revealed that the milling process induced changes in both the α-Mg and the β-Mg17Al12 phases. By increasing the milling speed, the crystallite size decreases by up to 70% for AZ91 powders and by 80% for magnesium powders. The relative densities of the compacted AZ samples were greater than 85% and this parameter increased for all samples after thermal treatment at 450 °C, obtaining densities higher than 88%. Hardness measurements disclosed values as high as 84.3 HR15T. Theoretical calculations of mechanical strength were obtained for all samples based on the hardness values measured, finding very encouraging results for the three Mg alloys. Graphic Abstract: [Figure not available: see fulltext.] © 2019, The Korean Institute of Metals and Materials.eng
dc.language.isoeng
dc.publisherKorean Institute of Metals and Materials
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074647222&doi=10.1007%2fs12540-019-00490-1&partnerID=40&md5=d2e6c326ad8c420660fa60911f0c43db
dc.sourceMetals and Materials International
dc.titleImproved Mg–Al–Zn Magnesium Alloys Produced by High Energy Milling and Hot Sintering
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Materiales
dc.type.spaArtículo
dc.identifier.doi10.1007/s12540-019-00490-1
dc.subject.keywordAZ91 magnesium alloyeng
dc.subject.keywordCrystallite sizeeng
dc.subject.keywordHigh energy millingeng
dc.subject.keywordMgeng
dc.subject.keywordParticle sizeeng
dc.subject.keywordThermal treatmenteng
dc.relation.citationvolume27
dc.relation.citationissue5
dc.relation.citationstartpage1113
dc.relation.citationendpage1130
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationGalindez, Y., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationCorrea, E., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, Colombia
dc.affiliationZuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Circular 1ª. Nº 70-01, Medellín, Colombia
dc.affiliationValencia-Escobar, A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Circular 1ª. Nº 70-01, Medellín, Colombia
dc.affiliationCalderon, D., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationToro, L., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationChacón, P., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Circular 1ª. Nº 70-01, Medellín, Colombia
dc.affiliationEcheverría E, F., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.relation.referencesČížek, L., Greger, M., Pawlica, L., Dobrzański, L.A., Tański, T., Study of selected properties of magnesium alloy AZ91 after heat treatment and forming (2004) J. Mater. Process. Technol., 157-158, pp. 466-471
dc.relation.referencesLee, J.U., Kim, S.H., Jo, W.K., Hong, W.H., Kim, W., Bae, J.H., Park, S.H., Grain-refined AZ92 alloy with superior strength and ductility (2018) Metals Mater. Int., 24, pp. 730-737
dc.relation.referencesDobrzański, L.A., Tański, T., Čížek, L., Brytan, Z., Structure and properties of magnesium cast alloys (2007) J. Mater. Process. Technol., 192-193, pp. 567-574
dc.relation.referencesMondet, M., Barraud, E., Lemonnier, S., Guyon, J., Allain, N., Grosdidier, T., Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering (2016) Acta Mater., 119, pp. 55-67
dc.relation.referencesXu, Y., Hu, L., Deng, T., Ye, L., Hot deformation behavior and processing map of as-cast AZ61 magnesium alloy (2013) Mater. Sci. Eng. A, 559, pp. 528-533
dc.relation.referencesJabbari-Taleghani, M.A., Torralba, J.M., Hot workability of nanocrystalline AZ91 magnesium alloy (2014) J. Alloys Compd., 595, pp. 1-7
dc.relation.referencesHwang, S., Nishimura, C., McCormick, P.G., Mechanical milling of magnesium powder (2001) Mater. Sci. Eng. A, 318, pp. 22-33
dc.relation.referencesZhang, Z., Yang, R., Chen, G., Zhao, Y., Shao, Y., Correlation between microstructure and tensile behavior in powder metallurgy ZK60 alloys (2012) Mater. Lett., 89, pp. 166-168
dc.relation.referencesGarcés, G., Domínguez, F., Pérez, P., Caruana, G., Adeva, P., Effect of extrusion temperature on the microstructure and plastic deformation of PM-AZ92 (2006) J. Alloys Compd., 422, pp. 293-298
dc.relation.referencesJabbari Taleghani, M.A., Torralba, J.M., Hot deformation behavior and workability characteristics of AZ91 magnesium alloy powder compacts—a study using processing map (2013) Mater. Sci. Eng. A., 580, pp. 142-149
dc.relation.referencesWen-bin, F., Wa, F., Hong-fei, S., Preparation of high-strength Mg–3Al–Zn alloy with ultrafine-grained microstructure by powder metallurgy (2011) Powder Technol., 212, pp. 161-165
dc.relation.referencesAzimi, A., Shokuhfar, A., Zolriasatein, A., Nanostructured Al–Zn–Mg–Cu–Zr alloy prepared by mechanical alloying followed by hot pressing (2014) Mater. Sci. Eng. A, 595, pp. 124-130
dc.relation.referencesZheng, B., Ertorer, O., Li, Y., Zhou, Y., Mathaudhu, S.N., Tsao, C.Y.A., Lavernia, E.J., High strength, nano-structured Mg–Al–Zn alloy (2011) Mater. Sci. Eng. A, 528, pp. 2180-2191
dc.relation.referencesFang, W., Bin Fang, W., Sun, H.F., Bulk Mg–3Al–Zn alloy with ultrafine grain size produced by powder metallurgy (2011) J. Alloys Compd., 509, pp. 4887-4890
dc.relation.referencesMiyahara, Y., Horita, Z., Langdon, T.G., Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP (2006) Mater. Sci. Eng. A, 420, pp. 240-244
dc.relation.referencesJain, V., Mishra, R.S., Verma, R., Essadiqi, E., Superplasticity and microstructural stability in a Mg alloy processed by hot rolling and friction stir processing (2013) Scr. Mater., 68, pp. 447-450
dc.relation.referencesPérez-Prado, M.T., Del Valle, J.A., Ruano, O.A., Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding (2004) Scr. Mater., 51, pp. 1093-1097
dc.relation.referencesSuryanarayana, C., Mechanical alloying and milling (2001) Prog. Mater Sci., 46, pp. 1-184
dc.relation.referencesChaubey, A.K., Scudino, S., Samadi Khoshkhoo, M., Prashanth, K.G., Mukhopadhyay, N.K., Mishra, B.K., Eckert, J., High-strength ultrafine grain Mg–7.4%Al alloy synthesized by consolidation of mechanically alloyed powders (2014) J. Alloys Compd., 610, pp. 456-461
dc.relation.referencesRashad, M., Pan, F., Asif, M., Room temperature mechanical properties of Mg–Cu–Al alloys synthesized using powder metallurgy method (2015) Mater. Sci. Eng. A, 644, pp. 129-136
dc.relation.referencesRuiz Navas, E.M., Edil da Costa, C., Verlasco López, F., Torralba Castelló, J.M., Aleación mecánica: Método de obtención de polvos metálicos y de materiales compuestos (2000) Rev. Metal., 36, pp. 279-286
dc.relation.referencesMatsuzaki, K., Hatsukano, K., Hanada, K., Takahashi, M., Shimizu, T., Mechanical properties and formability of PM Mg–Al based alloys (2004) Proceedings of the 6Th International Conference on Magnesium Alloys and Their Applications, pp. 171-175. , https://doi.org/10.1002/3527603565.ch25
dc.relation.referencesZhou, Y.J., Jiang, A.Y., Liu, J.X., The effect of sintering temperature to the microstructure and properties of AZ91 magnesium alloy by powder metallurgy (2013) Appl. Mech. Mater., 377, pp. 250-254
dc.relation.referencesFogagnolo, J., Velasco, F., Robert, M., Torralba, J., Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders (2003) Mater. Sci. Eng. A, 342, pp. 131-143
dc.relation.referencesRazavi-Tousi, S.S., Szpunar, J.A., Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling (2015) Powder Technol., 284, pp. 149-158
dc.relation.referencesChaubey, A., Scudino, S., Khoshkhoo, M., Prashanth, K., Mukhopadhyay, N., Mishra, B., Eckert, J., Synthesis and characterization of nanocrystalline Mg–74%Al powders produced by mechanical alloying (2013) Metals (Basel), 3, pp. 58-68
dc.relation.referencesHabibi, M.K., Tun, K.S., Gupta, M., An investigation into the effect of ball milling of reinforcement on the enhanced mechanical response of magnesium (2011) J. Compos. Mater., 45 (24), pp. 2483-2493
dc.relation.referencesWagih, A., Effect of milling time on morphology and microstructure of Al–Mg/Al2O3 nanocomposite powder produced by mechanical alloying (2014) Int. J. Adv. Eng. Sci., 4, pp. 1-7
dc.relation.referencesPekguleryuz, M.O., Kainer, K.U., Kaya, A.A., (2013) Fundamental of Magnesium Alloy Metallurgy, , Woodhead Publishing, Sawston
dc.relation.referencesRasband, W., (1997), https://imagej.nih.gov/ij/, ImageJ
dc.relation.references(2015) ASTM E799-03: Standard Practice for Determining Data Criteria and Processing for Liquid Drop Size Analysis, 3, pp. 1-5. , ASTM International, West Conshohocken
dc.relation.referencesJoshi, R.S., Srivastava, S., Singh, H., Microstructural analysis of nanostructured aluminum alloy strips created from machining based deformation process (2014) Procedia CIRP, 14, pp. 130-135
dc.relation.references(2018) ASTM E18-1: Standard Test Methods for Rockwell Hardness of Metallic Materials, pp. 1-38. , ASTM International, West Conshohocken
dc.relation.referencesLiu, J., Lv, X., Li, J., Zeng, X., Xu, Z., Zhang, H., Jiang, L., Influence of parameters of high-energy ball milling on the synthesis and densification of magnesium aluminate spinel (2016) Sci. Sinter., 48, pp. 353-362
dc.relation.referencesGupta, R.K., Murty, B.S., Birbilis, N., (2017) An overview of high-energy ball milled nanocrystalline aluminum alloys, , Springer, Berlin
dc.relation.references(2015) ASTM B951-11: Standard Practice for Codification of Unalloyed Magnesium and Magnesium- Alloys, Cast and Wrought, pp. 1-7. , ASTM International, West Conshohocken
dc.relation.referencesYoo, M.H., Agnew, S.R., Morris, J.R., Ho, K.M., Non-basal slip systems in HCP metals and alloys: source mechanisms (2001) Mater. Sci. Eng. A, 319-321, pp. 87-92
dc.relation.referencesAgnew, S.R., Duygulu, Ö., Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B (2005) Int. J. Plast., 21, pp. 1161-1193
dc.relation.referencesLiu, Q., Song, J., Pan, F., She, J., Zhang, S., Peng, P., The edge crack, texture evolution, and mechanical properties of Mg–1Al–1Sn–Mn alloy sheets prepared using on-line heating rolling (2018) Metals (Basel), 8, p. 860
dc.relation.referencesCatorceno, L.L.C., de Abreu, H.F.G., Padilha, A.F., Effects of cold and warm cross-rolling on microstructure and texture evolution of AZ31B magnesium alloy sheet (2018) J. Magnes. Alloys, 6, pp. 121-133
dc.relation.referencesFeng, J., Sun, H., Li, X., Zhang, J., Fang, W., Fang, W., Microstructures and mechanical properties of the ultrafine-grained Mg–3Al–Zn alloys fabricated by powder metallurgy (2016) Adv. Powder Technol., 27, pp. 550-556
dc.relation.referencesPozuelo, M., Chang, Y.W., Yang, J.M., Enhanced compressive strength of an extruded nanostructured Mg–10Al alloy (2014) Mater. Sci. Eng. A, 594, pp. 203-211
dc.relation.referencesXun, Y., Rodriguez, R., Lavernia, E.J., Mohamed, F.A., Processing and microstructural evolution of powder metallurgy Zn-22 Pct Al eutectoid alloy containing nanoscale dispersion particles (2005) Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 36, pp. 2849-2859
dc.relation.referencesMarotta, L., De Vasconcellos, R., Carvalho, Y.R., Falchete, R., Gustavo, L., De Vasconcellos, O., Lima, M., Cairo, A., Porous titanium by powder metallurgy for biomedical application: characterization, cell citotoxity and in vivo tests of osseointegration (2012) Biomed. Eng. Tech. Appl. Med.
dc.relation.referencesZheng, L., Nie, H., Liang, W., Wang, H., Wang, Y., Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys (2016) J. Magnes. Alloys, 4, pp. 115-122
dc.relation.referencesZhang, Z., Yu, H., Chen, G., Yu, H., Xu, C., Correlation between microstructure and tensile properties in powder metallurgy AZ91 alloys (2011) Mater. Lett., 65, pp. 2686-2689
dc.relation.referencesJabbari Taleghani, M.A., Torralba, J.M., The microstructural evolution of a pre-alloyed AZ91 magnesium alloy powder through high-energy milling and subsequent isothermal annealing (2013) Mater. Lett., 98, pp. 182-185
dc.relation.referencesLee, T., Yamasaki, M., Kawamura, Y., Go, J., Park, S.H., High-strength AZ91 alloy fabricated by rapidly solidified flaky powder metallurgy and hot extrusion (2019) Metals Mater. Int., 25, pp. 372-380
dc.relation.referencesWang, Z., Yang, Y., Li, B., Zhang, Y., Zhang, Z., Effect of hot-deformation on microstructure and mechanical properties of AZ80 magnesium alloy (2013) Mater. Sci. Eng. A, 582, pp. 36-40
dc.relation.referencesSivasankaran, S., Sivaprasad, K., Narayanasamy, R., Iyer, V.K., An investigation on flowability and compressibility of AA 6061100-x-x wt% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying (2010) Powder Technol., 201, pp. 70-82
dc.relation.referencesBurke, P., Kipouros, G.J., Development of magnesium powder metallurgy AZ31 alloy using commercially available powders (2011) High Temp. Mater. Process., 30, pp. 51-61
dc.relation.referencesAnish, R., Pragash, M.S., Singh, G.R., Development and characterization of AZ31B Mg alloy using powder metallurgy technique followed by hot extrusion (2014) Adv. Mater. Res., 984-985, pp. 124-128
dc.relation.referencesSyarif, J., Sajuri, Z., Zulkoffli, Z., Fabrication of AZ61 magnesium alloy from a pre-alloyed powder using PM process (2008) Engineering Postgraduate Conference, pp. 1-13
dc.relation.references(2013) ASTM B94-13:Standard Specification for Magnesium-Alloy Die Castings, pp. 1-6. , ASTM International, West Conshohocken
dc.relation.referencesSekhar, A.P., Nandy, S., Kumar Ray, K., Das, D., Hardness—yield strength relation of Al–Mg–Si alloys (2018) IOP Conf. Ser. Mater. Sci. Eng.
dc.relation.referencesTiryakioğlu, M., Robinson, J.S., Salazar-Guapuriche, M.A., Zhao, Y.Y., Eason, P.D., Hardness–strength relationships in the aluminum alloy 7010 (2015) Mater. Sci. Eng. A, 631, pp. 196-200
dc.relation.referencesTiryakioğlu, M., On the relationship between Vickers hardness and yield stress in Al–Zn–Mg–Cu Alloys (2015) Mater. Sci. Eng. A, 633, pp. 17-19
dc.relation.referencesCaceres, C., Griffiths, J., Pakdel, A., Davidson, C., Microhardness mapping and the hardness–yield strength relationship in high-pressure diecast magnesium alloy AZ91 (2005) Mater. Sci. Eng. A., 402, pp. 258-268
dc.relation.referencesKhodabakhshi, F., Haghshenas, M., Eskandari, H., Koohbor, B., Hardness–strength relationships in fine and ultra-fine grained metals processed through constrained groove pressing (2015) Mater. Sci. Eng. A, 636, pp. 331-339
dc.relation.referencesWang, H.Y., Yu, Z.P., Zhang, L., Liu, C.G., Zha, M., Wang, C., Jiang, Q.C., Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process (2015) Sci. Rep., 5, pp. 1-9
dc.relation.referencesWang, X., Wu, M., Ma, W., Lu, Y., Yuan, S., Achieving superplasticity in AZ31 magnesium alloy processed by hot extrusion and rolling (2016) J. Mater. Eng. Perform., 25, pp. 64-67
dc.relation.references(2017) ASTM B91-17: Standard Specification for Magnesium-Alloy Forgings, pp. 1-5. , ASTM International, West Conshohocken
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record