Mostrar el registro sencillo del ítem

dc.contributor.authorSaldarriaga J.F
dc.contributor.authorGaviria X
dc.contributor.authorGene J.M
dc.contributor.authorAguado R.
dc.date.accessioned2022-09-14T14:33:50Z
dc.date.available2022-09-14T14:33:50Z
dc.date.created2022
dc.identifier.issn9575820
dc.identifier.urihttp://hdl.handle.net/11407/7489
dc.descriptionIn this work, bituminous coal, sugar cane, untreated and pretreated hazardous waste ashes are tested as supplementary cement materials, analyzing their reactivity in lime pastes prepared according to ASTM C–305, using a 0.5 water/lime ratio. The hydration process was stopped with acetone at the ages of 1, 3, 7, 14, 28, 56, 90 and 180 d. Mineral phases were determined by thermogravimetry, XRD, and SEM finding high contents of SiO2 and Al2O3 in the coal and sugarcane ashes, while in the hazardous waste ashes low contents of these oxides were found. Samples of sugarcane and untreated hazardous waste ashes seems to be attractive to be used as substitutes in the production of construction supplies. In addition to this, an E-factor analysis was carried out, which showed that carrying out fly ash replacements in any quantity contributes to the circular economy of all the economic activities involved. Reducing the amount of solid waste to be disposed of and improving the local and regional environmental quality. © 2022 The Institution of Chemical Engineerseng
dc.language.isoeng
dc.publisherInstitution of Chemical Engineers
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85123919683&doi=10.1016%2fj.psep.2022.01.074&partnerID=40&md5=e1fa44344f09a77b9afb794717028ec4
dc.sourceProcess Safety and Environmental Protection
dc.titleImproving circular economy by assessing the use of fly ash as a replacement of lime pastes reducing its environmental impact
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civil
dc.type.spaArtículo
dc.identifier.doi10.1016/j.psep.2022.01.074
dc.subject.keywordCircular economyeng
dc.subject.keywordFly asheseng
dc.subject.keywordLime pasteeng
dc.subject.keywordReactivityeng
dc.subject.keywordWasteeng
dc.subject.keywordAcetoneeng
dc.subject.keywordAluminaeng
dc.subject.keywordAluminum oxideeng
dc.subject.keywordBituminous coaleng
dc.subject.keywordCoal asheng
dc.subject.keywordEconomicseng
dc.subject.keywordHazardseng
dc.subject.keywordLimeeng
dc.subject.keywordSilicaeng
dc.subject.keywordSugar caneeng
dc.subject.keywordThermogravimetric analysiseng
dc.subject.keywordCircular economyeng
dc.subject.keywordConstruction supplyeng
dc.subject.keywordEconomic activitieseng
dc.subject.keywordHazardous wasteseng
dc.subject.keywordHigh-contenteng
dc.subject.keywordHydration processeng
dc.subject.keywordLime-pasteseng
dc.subject.keywordMineral phasiseng
dc.subject.keywordReactivityeng
dc.subject.keywordXRDeng
dc.subject.keywordFly asheng
dc.relation.citationvolume159
dc.relation.citationstartpage1008
dc.relation.citationendpage1018
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationSaldarriaga, J.F., Dept. of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, Colombia
dc.affiliationGaviria, X., Program of Industrial Engineering, Universidad de Medellín, Carrera 87 #30-40, Medellín, Colombia
dc.affiliationGene, J.M., Dept. of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, Colombia
dc.affiliationAguado, R., Dept. of Chemical Enginering, Uniervsity of the Basque Country UPV/EHU, PO Box 644, Bilbao, E48080, Spain
dc.relation.referencesAjiwe, V.I.E., Okeke, C.A., Akigwe, F.C., A preliminary study of manufacture of cement from rice husk ash (2000) Bioresour. Technol., 73, pp. 37-39
dc.relation.referencesAkram, T., Memon, S.A., Obaid, H., Production of low cost self compacting concrete using bagasse ash (2009) Constr. Build. Mater., 23, pp. 703-712
dc.relation.referencesAlavéz-Ramírez, R., Montes-García, P., Martínez-Reyes, J., Altamirano-Juárez, D.C., Gochi-Ponce, Y., The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks (2012) Constr. Build. Mater., 34, pp. 296-305
dc.relation.referencesArezoumandi, M., Looney, T.J., Volz, J.S., Effect of fly ash replacement level on the bond strength of reinforcing steel in concrete beams (2015) J. Clean. Prod., 87, pp. 745-751
dc.relation.references(2008), ASTM, 2008. Standard C618-08 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete ASTM Int., West Conshohocken, PA, Usa
dc.relation.references(2015), ASTM C305:-14: practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency ASTM Int. 2015 doi: 10.1520/C0305-14
dc.relation.referencesAughenbaugh, K.L., Chancey, R.T., Stutzman, P., Juenger, M.C., Fowler, D.W., An examination of the reactivity of fly ash in cementitious pore solutions (2013) Mater. Struct., 46, pp. 869-880
dc.relation.referencesBakalár, T., Pavolová, H., Hajduová, Z., Lacko, R., Kyšeľa, K., Metal recovery from municipal solid waste incineration fly ash as a tool of circular economy (2021) J. Clean. Prod., 302
dc.relation.referencesBelviso, C., State-of-the-art applications of fly ash from coal and biomass: a focus on zeolite synthesis processes and issues (2018) Prog. Energy Combust. Sci., 65, pp. 109-135
dc.relation.referencesBentz, D.P., Garboczi, E.J., Simulation studies of the effects of mineral admixtures on the cement paste-aggregate interfacial zone (SP-105) (1991) Mater. J., 88, pp. 518-529
dc.relation.referencesBingöl, A.F., Tohumcu, İ., Effects of different curing regimes on the compressive strength properties of self compacting concrete incorporating fly ash and silica fume (2013) Mater. Des., 51, pp. 12-18
dc.relation.referencesBouzoubaa, N., Zhang, M.-H., Malhotra, V.M., Golden, D.M., Blended fly ash cements a review (1999) Mater. J., 96, pp. 641-650
dc.relation.referencesChao-Lung, H., Anh-Tuan, B.L., Chun-Tsun, C., Effect of rice husk ash on the strength and durability characteristics of concrete (2011) Constr. Build. Mater., 25, pp. 3768-3772
dc.relation.referencesChen, C., Qin, S., Chen, F., Lu, Z., Cheng, Z., Co-combustion characteristics study of bagasse, coal and their blends by thermogravimetric analysis (2019) J. Energy Inst., 92, pp. 364-369
dc.relation.referencesChimenos, J.M., Fernández, A.I., Miralles, L., Segarra, M., Espiell, F., Short-term natural weathering of MSWI bottom ash as a function of particle size (2003) Waste Manag., 23, pp. 887-895
dc.relation.referencesChindaprasirt, P., Jaturapitakkul, C., Sinsiri, T., Effect of fly ash fineness on compressive strength and pore size of blended cement paste (2005) Cem. Concr. Compos., 27, pp. 425-428
dc.relation.referencesChindaprasirt, P., Jaturapitakkul, C., Sinsiri, T., Effect of fly ash fineness on microstructure of blended cement paste (2007) Constr. Build. Mater., 21, pp. 1534-1541
dc.relation.referencesChindaprasirt, P., Sinsiri, T., Kroehong, W., Jaturapitakkul, C., Role of filler effect and pozzolanic reaction of biomass ashes on hydrated phase and pore size distribution of blended cement paste (2014) J. Mater. Civ. Eng., 26, p. 04014057
dc.relation.referencesChusilp, N., Jaturapitakkul, C., Kiattikomol, K., Utilization of bagasse ash as a pozzolanic material in concrete (2009) Constr. Build. Mater., 23, pp. 3352-3358
dc.relation.referencesColangelo, F., Cioffi, R., Montagnaro, F., Santoro, L., Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material (2012) Waste Manag., 32, pp. 1179-1185
dc.relation.references(2016), CONPES Política Nacional para la Gestión de Residuos Sólidos
dc.relation.referencesCordeiro, G.C., Filho, R.D.T., Fairbairn, E., de, M.R., Use of ultrafine rice husk ash with high-carbon content as pozzolan in high performance concrete (2009) Mater. Struct., 42, pp. 983-992
dc.relation.referencesCuesta, A., Santacruz, I., De la Torre, A.G., Dapiaggi, M., Zea-Garcia, J.D., Aranda, M.A.G., Local structure and Ca/Si ratio in C-S-H gels from hydration of blends of tricalcium silicate and silica fume (2021) Cem. Concr. Res., 143
dc.relation.referencesĆwik, A., Casanova, I., Rausis, K., Zarębska, K., Utilization of high-calcium fly ashes through mineral carbonation: the cases for Greece, Poland and Spain (2019) J. CO2 Util., 32, pp. 155-162
dc.relation.referencesDavidovits, J., (2015) Geopolymer Chemistry and Applications, , fourth ed. Institut Géopolymère France
dc.relation.referencesdel Valle-Zermeño, R., Formosa, J., Chimenos, J.M., Martínez, M., Fernández, A.I., Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material (2013) Waste Manag., 33, pp. 621-627. , Special Thematic Issue: Urban Mining
dc.relation.referencesdel Valle-Zermeño, R., Formosa, J., Prieto, M., Nadal, R., Niubó, M., Chimenos, J.M., Pilot-scale road subbase made with granular material formulated with MSWI bottom ash and stabilized APC fly ash: environmental impact assessment (2014) J. Hazard. Mater., 266, pp. 132-140
dc.relation.referencesDel Valle-Zermeño, R., Chimenos, J.M., Giró-Paloma, J., Formosa, J., Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier (2014) Chemosphere, 117, pp. 402-409
dc.relation.referencesDeschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., Goetz-Neunhoeffer, F., Neubauer, J., Hydration of Portland cement with high replacement by siliceous fly ash (2012) Cem. Concr. Res., 42, pp. 1389-1400
dc.relation.referencesDicks, A.P., Hent, A., The E factor and process mass intensity (2015) Green Chemistry Metrics: A Guide to Determining and Evaluating Process Greenness, SpringerBriefs in Molecular Science, pp. 45-67. , A. P. Dicks A. Hent Springer International Publishing Cham
dc.relation.referencesDilmore, R.M., Neufeld, R.D., Autoclaved aerated concrete produced with low NO x burner/selective catalytic reduction fly ash (2001) J. Energy Eng., 127, pp. 37-50
dc.relation.referencesDonatello, S., Kuenzel, C., Palomo, A., Fernández-Jiménez, A., High temperature resistance of a very high volume fly ash cement paste (2014) Cem. Concr. Compos., 45, pp. 234-242
dc.relation.referencesDuan, P., Yan, C., Zhou, W., Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack (2016) Ceram. Int., 42, pp. 3504-3517
dc.relation.referencesFaleschini, F., Zanini, M.A., Brunelli, K., Pellegrino, C., Valorization of co-combustion fly ash in concrete production (2015) Mater. Des., 85, pp. 687-694
dc.relation.referencesFontseré Obis, M., Germain, P., Troesch, O., Spillemaecker, M., Benbelkacem, H., Valorization of MSWI bottom ash for biogas desulfurization: Influence of biogas water content (2017) Waste Manag., 60, pp. 388-396. , Spec. Themat. Issue.: Urban Min. Circ. Econ
dc.relation.referencesFrançois, D., Pierson, K., Environmental assessment of a road site built with MSWI residue (2009) Sci. Total Environ., 407, pp. 5949-5960
dc.relation.referencesFurlan, A.P., Razakamanantsoa, A., Ranaivomanana, H., Amiri, O., Levacher, D., Deneele, D., Effect of fly ash on microstructural and resistance characteristics of dredged sediment stabilized with lime and cement (2021) Constr. Build. Mater., 272
dc.relation.referencesGalina, N.R., Romero Luna, C.M., Arce, G.L.A.F., Ávila, I., Comparative study on combustion and oxy-fuel combustion environments using mixtures of coal with sugarcane bagasse and biomass sorghum bagasse by the thermogravimetric analysis (2019) J. Energy Inst., 92, pp. 741-754
dc.relation.referencesGarg, M., Pundir, A., Comprehensive study of fly ash binder developed with fly ash – alpha gypsum plaster - Portland cement (2012) Constr. Build. Mater., 37, pp. 758-765. , Non Destr. Tech. Assess. Concr
dc.relation.referencesGartner, E.M., (2011), https://doi.org/10.1016/j.cemconres.2011.03.006, Macphee, D.E. A physico-chemical basis for novel cementitious binders. Cem. Concr. Res., Special Issue: 13th International Congress on the Chemistry of Cement 41, 736–749
dc.relation.referencesGaviria, X., Borrachero, M.V., Payá, J., Monzó, J.M., Tobón, J.I., Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TG) (2018) J. Therm. Anal. Calorim., 132, pp. 39-46
dc.relation.referencesGene, J.M., Gaviria, X., Saldarriaga, J.F., Evaluation of fly ash reactivity from incineration of hazardous waste in lime pastes (2019) Chem. Eng. Trans., 75, pp. 619-624
dc.relation.referencesGinés, O., Chimenos, J.M., Vizcarro, A., Formosa, J., Rosell, J.R., Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations (2009) J. Hazard. Mater., 169, pp. 643-650
dc.relation.referencesHabert, G., 10 - Assessing the environmental impact of conventional and ‘green’ cement production (2014) Eco-Efficient Construction and Building Materials, pp. 199-238. , F. Pacheco-Torgal L.F. Cabeza J. Labrincha A. de Magalhães Woodhead Publishing
dc.relation.referencesHaque, M.N., Kayali, O., Properties of high-strength concrete using a fine fly ash (1998) Cem. Concr. Res., 28, pp. 1445-1452
dc.relation.referencesHewlett, P., Lea's Chemistry of Cement and Concrete (2004), fourth ed. Butterworth-Heinemann Amsterdam (etc)
dc.relation.referencesHlaváček, P., Šulc, R., Šmilauer, V., Rößler, C., Snop, R., Ternary binder made of CFBC fly ash, conventional fly ash, and calcium hydroxide: phase and strength evolution (2018) Cem. Concr. Compos., 90, pp. 100-107
dc.relation.referencesHu, C., Microstructure and mechanical properties of fly ash blended cement pastes (2014) Constr. Build. Mater., 73, pp. 618-625
dc.relation.referencesHuo, W., Zhu, Z., Zhang, J., Kang, Z., Pu, S., Wan, Y., Utilization of OPC and FA to enhance reclaimed lime-fly ash macadam based geopolymers cured at ambient temperature (2021) Constr. Build. Mater., 303
dc.relation.referencesIslam, A., Alengaram, U.J., Jumaat, M.Z., Bashar, I.I., Kabir, S.M.A., Engineering properties and carbon footprint of ground granulated blast-furnace slag-palm oil fuel ash-based structural geopolymer concrete (2015) Constr. Build. Mater., 101, pp. 503-521
dc.relation.referencesJaturapitakkul, C., Kiattikomol, K., Tangchirapat, W., Saeting, T., Evaluation of the sulfate resistance of concrete containing palm oil fuel ash (2007) Constr. Build. Mater., 21, pp. 1399-1405
dc.relation.referencesKannan, V., Ganesan, K., Chloride and chemical resistance of self compacting concrete containing rice husk ash and metakaolin (2014) Constr. Build. Mater., 51, pp. 225-234
dc.relation.referencesKocak, Y., Nas, S., The effect of using fly ash on the strength and hydration characteristics of blended cements (2014) Constr. Build. Mater., 73, pp. 25-32
dc.relation.referencesKwan, A.K.H., Chen, J.J., Adding fly ash microsphere to improve packing density, flowability and strength of cement paste (2013) Powder Technol., 234, pp. 19-25
dc.relation.referencesLieder, M., Rashid, A., Towards circular economy implementation: a comprehensive review in context of manufacturing industry (2016) J. Clean. Prod., 115, pp. 36-51
dc.relation.referencesLiu, Y., Zheng, L., Li, X., Xie, S., SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures (2009) J. Hazard. Mater., 162, pp. 161-173
dc.relation.referencesLo, T.Y., Cui, H., Memon, S.A., Noguchi, T., Manufacturing of sintered lightweight aggregate using high-carbon fly ash and its effect on the mechanical properties and microstructure of concrete (2016) J. Clean. Prod., 112, pp. 753-762
dc.relation.referencesMadurwar, M.V., Ralegaonkar, R.V., Mandavgane, S.A., Application of agro-waste for sustainable construction materials: a review (2013) Constr. Build. Mater., 38, pp. 872-878. , 25th Anniv. Sess. Acids 228 – Build. Future NDT Concr
dc.relation.referencesMaroto-Valer, M.M., Taulbee, D.N., Hower, J.C., Characterization of differing forms of unburned carbon present in fly ash separated by density gradient centrifugation (2001) Fuel, 80, pp. 795-800
dc.relation.referencesMegat Johari, M.A., Zeyad, A.M., Muhamad Bunnori, N., Ariffin, K.S., Engineering and transport properties of high-strength green concrete containing high volume of ultrafine palm oil fuel ash (2012) Constr. Build. Mater., 30, pp. 281-288
dc.relation.referencesMemon, A.H., Radin, S.S., Zain, M.F.M., Trottier, J.-F., Effects of mineral and chemical admixtures on high-strength concrete in seawater (2002) Cem. Concr. Res., 32, pp. 373-377
dc.relation.referencesMemon, S.A., Shaikh, M.A., Akbar, H., Utilization of rice husk ash as viscosity modifying agent in self compacting concrete (2011) Constr. Build. Mater., 25, pp. 1044-1048. , Composite Materials and Adhesive Bonding Technology
dc.relation.referencesMorales, L.F., Herrera, K., López, J.E., Saldarriaga, J.F., Use of biochar from rice husk pyrolysis: assessment of reactivity in lime pastes (2021) Heliyon, 7
dc.relation.referencesMustafa, A.M., Abdullah, M.M.A.B., Abdulkareem, O.A., Razak, R., Yahya, Z., Mohamed Noor, N., Kamarudin, H., Review on processing of low calcium fly ash geopolymer concrete (2013) Aust. J. Basic Appl. Sci., 7, pp. 342-349
dc.relation.referencesNath, P., Sarker, P., (2011), https://doi.org/10.1016/j.proeng.2011.07.144, Effect of Fly Ash on the Durability Properties of High Strength Concrete. Procedia Eng., The Proceedings of the Twelfth East Asia-Pacific Conference on Structural Engineering and Construction 14, 1149–1156
dc.relation.referencesNeville, A.M., Brooks, J.J., Concrete Technology, Edición: 2 (2010), second ed. Pearson Education Canada, Harlow
dc.relation.referencesNguyen, H.-A., Chang, T.-P., Shih, J.-Y., Chen, C.-T., Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste (2019) Cem. Concr. Compos., 99, pp. 40-48
dc.relation.referencesNguyen, T.B.T., Chatchawan, R., Saengsoy, W., Tangtermsirikul, S., Sugiyama, T., Influences of different types of fly ash and confinement on performances of expansive mortars and concretes (2019) Constr. Build. Mater., 209, pp. 176-186
dc.relation.referencesOlsson, S., Kärrman, E., Gustafsson, J.P., Environmental systems analysis of the use of bottom ash from incineration of municipal waste for road construction (2006) Resour. Conserv. Recycl., 48, pp. 26-40
dc.relation.referencesPapadakis, V.G., Tsimas, S., Supplementary cementing materials in concrete: Part I: efficiency and design (2002) Cem. Concr. Res., 32, pp. 1525-1532
dc.relation.referencesPapadakis, V.G., Antiohos, S., Tsimas, S., Supplementary cementing materials in concrete: Part II: a fundamental estimation of the efficiency factor (2002) Cem. Concr. Res., 32, pp. 1533-1538
dc.relation.referencesPaulik, F., Paulik, J., Arnold, M., Thermal decomposition of gypsum (1992) Thermochim. Acta, 200, pp. 195-204
dc.relation.referencesPoon, C.S., Wong, Y.L., Lam, L., The influence of different curing conditions onthe pore structure and related properties of fly-ash cement pastes and mortars (1997) Constr. Build. Mater., 11, pp. 383-393
dc.relation.referencesPrieto-Sandoval, V., Jaca, C., Ormazabal, M., Towards a consensus on the circular economy (2018) J. Clean. Prod., 179, pp. 605-615
dc.relation.referencesPurnell, P., Black, L., Embodied carbon dioxide in concrete: variation with common mix design parameters (2012) Cem. Concr. Res., 42, pp. 874-877
dc.relation.referencesRada, E.C., (2017) Waste Management and Valorization: Alternative Technologies, , CRC Press
dc.relation.referencesRahman, M.E., Muntohar, A.S., Pakrashi, V., Nagaratnam, B.H., Sujan, D., Self compacting concrete from uncontrolled burning of rice husk and blended fine aggregate (2014) Mater. Des., 55, pp. 410-415
dc.relation.referencesRajamma, R., Ball, R.J., Tarelho, L.A.C., Allen, G.C., Labrincha, J.A., Ferreira, V.M., Characterisation and use of biomass fly ash in cement-based materials (2009) J. Hazard. Mater., 172, pp. 1049-1060
dc.relation.referencesRanganath, R.V., Bhattacharjee, B., Krishnamoorthy, S., Influence of size fraction of ponded ash on its pozzolanic activity (1998) Cem. Concr. Res., 28, pp. 749-761
dc.relation.referencesRodríguez-Fernández, M.C., Alonso, J.D., Montero, C., Saldarriaga, J.F., Study of the effects of the addition of fly ash from carwash sludge in lime and cement pastes (2020) Sustainability, 12, p. 6451
dc.relation.referencesRukzon, S., Chindaprasirt, P., Utilization of bagasse ash in high-strength concrete (2012) Mater. Des., 34, pp. 45-50
dc.relation.referencesRukzon, S., Chindaprasirt, P., Mahachai, R., Effect of grinding on chemical and physical properties of rice husk ash (2009) Int. J. Miner. Metall. Mater., 16, pp. 242-247
dc.relation.referencesSafiuddin, M., West, J.S., Soudki, K.A., Flowing ability of the mortars formulated from self-compacting concretes incorporating rice husk ash (2011) Constr. Build. Mater., 25, pp. 973-978. , Composite Materials and Adhesive Bonding Technology
dc.relation.referencesSafiuddin, M., West, J.S., Soudki, K.A., Properties of freshly mixed self-consolidating concretes incorporating rice husk ash as a supplementary cementing material (2012) Constr. Build. Mater., 30, pp. 833-842
dc.relation.referencesSiddique, R., Performance characteristics of high-volume Class F fly ash concrete (2004) Cem. Concr. Res., 34, pp. 487-493
dc.relation.referencesSiddique, R., Khatib, J.M., Abrasion resistance and mechanical properties of high-volume fly ash concrete (2010) Mater. Struct., 43, pp. 709-718
dc.relation.referencesSiddique, R., Aggarwal, P., Aggarwal, Y., Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash (2012) Constr. Build. Mater., 29, pp. 73-81
dc.relation.referencesŠkvára, F., Kopecky, L., Němeček, J., Bittnar, Z., Microstructure of geopolymer materials based on fly ash (2006) Ceram. Silik., 50, pp. 208-215
dc.relation.referencesSomna, R., Jaturapitakkul, C., Rattanachu, P., Chalee, W., Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete (2012) Mater. Des. 1980-2015, 36, pp. 597-603. , Sustain. Mater. Des. Appl
dc.relation.referencesSong, W., Zhu, Z., Pu, S., Wan, Y., Xu, X., Song, S., Zhang, J., Hu, L., Multi-technical characterization and correlations between properties of standard cured alkali-activated high-calcium FA binders with GGBS as additive (2020) Constr. Build. Mater., 241
dc.relation.referencesStiernström, S., Enell, A., Wik, O., Borg, H., Breitholtz, M., An ecotoxicological evaluation of aged bottom ash for use in constructions (2014) Waste Manag, 34, pp. 86-92
dc.relation.referencesSua-Iam, G., Makul, N., Utilization of coal- and biomass-fired ash in the production of self-consolidating concrete: a literature review (2015) J. Clean. Prod., 100, pp. 59-76
dc.relation.referencesSuvimol, S., Daungruedee, C., Bagasse ash: effect of pozzolanic activity and application in cement use aspect (2008), pp. 165-173. , 3rd ACF International Conference – ACF/VCA
dc.relation.referencesTaylor, H.F.W., (1997) Cement Chemistry, , second ed. Thomas Telford London
dc.relation.referencesTieves, F., Tonin, F., Fernández-Fueyo, E., Robbins, J.M., Bommarius, B., Bommarius, A.S., Alcalde, M., Hollmann, F., Energising the E-factor: the E+-factor (2019) Tetrahedron, 75, pp. 1311-1314
dc.relation.referencesTobón, J.I., Paya, J., Borrachero, M.V., Soriano, L., Restrepo, O.J., Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials (2012) J. Therm. Anal. Calorim., 107, pp. 233-239
dc.relation.referencesTobón, J.I., Payá, J.J., Borrachero, M.V., Restrepo, O.J., Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength (2012) Constr. Build. Mater., 36, pp. 736-742
dc.relation.referencesToniolo, N., Boccaccini, A.R., Fly ash-based geopolymers containing added silicate waste. a review (2017) Ceram. Int., 43, pp. 14545-14551
dc.relation.referencesTraore, F., Jones, C., Ramanathan, S., Suraneni, P., Hale, W.M., Using compressive strength and mass change to verify the calcium oxychloride threshold in cementitious pastes with fly ash (2021) Constr. Build. Mater., 296
dc.relation.referencesul Amin, N., Use of bagasse ash in concrete and its impact on the strength and chloride resistivity (2011) J. Mater. Civ. Eng., 23, pp. 717-720
dc.relation.referencesvan Loo, S., Biomass ash characteristics and behaviourin combustion systems (2008) The Handbook of Biomass Combustion and Cofiring, pp. 249-280. , Earthscan London
dc.relation.referencesvan Loo, S., Koppejan, J., (2008) The Handbook of Biomass Combustion and Co-firing, , first ed. Earthscan London
dc.relation.referencesVan Tuan, N., Ye, G., van Breugel, K., Fraaij, A.L.A., Bui, D.D., The study of using rice husk ash to produce ultra high performance concrete (2011) Constr. Build. Mater., 25, pp. 2030-2035
dc.relation.referencesVassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., An overview of the composition and application of biomass ash. Part 1. phase-mineral and chemical composition and classification (2013) Fuel, 105, pp. 40-76
dc.relation.referencesVelandia, D., Ramírez, F., Carrillo, J., (2015), Concretos con cenizas volantes provenientes de termoeléctricas, 1st ed. Ecoe Ediciones
dc.relation.referencesVishwakarma, V., Ramachandran, D., Anbarasan, N., Rabel, A.M., Studies of rice husk ash nanoparticles on the mechanical and microstructural properties of the concrete (2016) Mater. Today Proc. Recent Adv. Nano Sci. Technol., 2015 (3), pp. 1999-2007
dc.relation.referencesWang, Q., Feng, J., Yan, P., The microstructure of 4-year-old hardened cement-fly ash paste (2012) Constr. Build. Mater., 29, pp. 114-119
dc.relation.referencesXu, W., Lo, T.Y., Memon, S.A., Microstructure and reactivity of rich husk ash (2012) Constr. Build. Mater., 29, pp. 541-547
dc.relation.referencesYao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q., A comprehensive review on the applications of coal fly ash (2015) Earth Sci. Rev., 141, pp. 105-121
dc.relation.referencesZhou, Y., Lu, J., Li, J., Cheeseman, C., Poon, C.S., Influence of seawater on the mechanical and microstructural properties of lime-incineration sewage sludge ash pastes (2021) Constr. Build. Mater., 278
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem