Mostrar el registro sencillo del ítem
Influencia del entorno financiero, el entorno macroeconómico, la estructura organizacional y la transparencia en la quiebra empresarial
dc.contributor.author | Ayús A.L.T | |
dc.contributor.author | Arias G.C.V. | |
dc.date.accessioned | 2022-09-14T14:33:50Z | |
dc.date.available | 2022-09-14T14:33:50Z | |
dc.date.created | 2021 | |
dc.identifier.issn | 1861042 | |
dc.identifier.uri | http://hdl.handle.net/11407/7492 | |
dc.description | [No abstract available] | eng |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional Autonoma de Mexico | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099796637&doi=10.22201%2ffca.24488410e.2021.2618&partnerID=40&md5=eb2036e325141d5667c3489dbb4f8d44 | |
dc.source | Contaduria y Administracion | |
dc.title | Influencia del entorno financiero, el entorno macroeconómico, la estructura organizacional y la transparencia en la quiebra empresarial | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Administración de Empresas | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.22201/fca.24488410e.2021.2618 | |
dc.relation.citationvolume | 66 | |
dc.relation.citationissue | 2 | |
dc.publisher.faculty | Facultad de Ciencias Económicas y Administrativas | |
dc.affiliation | Ayús, A.L.T., Escuela de Administración, Finanzas e Instituto Tecnológico, Colombia | |
dc.affiliation | Arias, G.C.V., Universidad de Medellín, Colombia | |
dc.relation.references | Acosta, E., Fernández, F., Ganga, H., Predicting corporate financial failure using macroeconomic variables and accounting data (2019) Computational Economics, 53 (1), pp. 227-257 | |
dc.relation.references | Affes, Z., Hentati, R., Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis (2017) Computational Economics | |
dc.relation.references | Akhigbe, A., Martin, A., Valuation impact of Sarbanes-Oxley: Evidence from disclosure and governance within the financial services industry (2006) Journal of Banking & Finance, 30 (3), pp. 989-1006 | |
dc.relation.references | Alaminos, D., del Castillo, A., Fernandez, M., A Global Model for Bankruptcy Prediction (2016) Plos One, 11 (11), p. 18 | |
dc.relation.references | Alfaro, E., Gámez, M., García, N., Linear discriminant analysis versus adaboost for failure forecasting (2008) Revista Española de Financiación y Contabilidad, XXXVII (137), pp. 13-32 | |
dc.relation.references | Altman, E., Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy (1968) The Journal of Finance, 23 (4), pp. 589-609 | |
dc.relation.references | Altman, E., Iwanicz, M., Laitinen, E., Suvas, A., Financial Distress Prediction in an International Context: A Review and Empirical Analysis of Altman's Z-Score Model (2017) Journal of International Financial Management and Accounting, 28, pp. 131-171 | |
dc.relation.references | Amendola, A., Restaino, M., Sensini, L., An analysis of the determinants of financial distress in Italy: A competing risks approach (2015) International Review Of Economics And Finance, 37, pp. 33-41 | |
dc.relation.references | Antunes, F., Ribeiro, B., Pereira, F., Probabilistic modeling and visualization for bankruptcy prediction (2017) Applied Soft Computing | |
dc.relation.references | Ayadi, M., Lazrak, S., Xing, D., Bankruptcy protection duration and outcome of Canadian public firms (2019) International Journal of Managerial Finance, 15 (5), pp. 858-888 | |
dc.relation.references | Barboza, F., Kimura, H., Altman, E., Machine learning models and bankruptcy prediction (2017) Expert Systems With Applications, 83, pp. 405-417 | |
dc.relation.references | Beaver, W., Financial Ratios As Predictors of Failure (1966) Journal of Accounting Research, 4 (1), pp. 71-111 | |
dc.relation.references | Bell, T., Neural Nets or the Logit Model? A Comparison of Each Model's Ability to Predict Commercial Bank Failures (1997) Intelligent Systems in Accounting, Finance and Management, 6, pp. 249-264 | |
dc.relation.references | Bernanke, B., Gertler, M., Financial Fragility and Economic Performance (1990) The Quarterly Journal of Economics, 105 (1), pp. 87-114 | |
dc.relation.references | Bernstein, S., Colonnelli, E., Giroud, X., Iverson, B., Bankruptcy spillovers (2019) Journal of Financial Economics, 133 (3), pp. 608-633 | |
dc.relation.references | Bryant, J., A model of reserves, bank runs, and deposit insurance (1980) Journal of Banking and Finance, 4 (4), pp. 335-344 | |
dc.relation.references | Bushman, R., Piotroski, J., Smith, A., What Determines Corporate Transparency? (2004) Journal of Accounting Research, 42 (2), pp. 207-252 | |
dc.relation.references | Caro, N., Guardiola, M., Ortiz, P., Árboles de clasificación como herramienta para predecir dificultades financieras en empresas Latinoamericanas a través de sus razones contables (2018) Contaduría y Administración, 63 (1), pp. 1-14 | |
dc.relation.references | Chen, J., Marshall, B., Zhang, J., Ganesh, S., Financial Distress Prediction in China (2006) Review of Pacific Basin Financial Markets & Policies, 9 (2), pp. 317-336 | |
dc.relation.references | Chin, W., Issues and Opinion on Structural Equation Modeling (1998) MIS Quarterly, 22 (1), pp. 1-110 | |
dc.relation.references | Chou, C., Hsieh, S., Qiu, C., Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction (2017) Applied Soft Computing, 56, pp. 298-316 | |
dc.relation.references | Coase, R., The Nature of the Firm (1937) Economica, new series, 4 (16), pp. 386-405 | |
dc.relation.references | Condello, S., Del Pozzo, A., Loprevite, S., Potential and Limitations of D.E.A. as a Bankruptcy Prediction Tool in the Light of a Study on Italian Listed Companies (2017) Applied Mathematical Sciences, 11 (44), pp. 2185-2207 | |
dc.relation.references | Dietrich, J., Discussion of Methodological Issues Related to the Estimation of Financial Distress Prediction Models (1984) Journal of Accounting Review, 22, pp. 83-86 | |
dc.relation.references | Eijffinger, S., Geraats, P., How transparent are central banks? (2006) European Journal of Political Economy, 22 (1), pp. 1-21 | |
dc.relation.references | García, J., Sánchez, J., Tomaseti, E., Fracaso empresarial y efectos contagio. Un análisis espacial para España (2016) Trimestre Económico, 83 (330), pp. 429-449 | |
dc.relation.references | Geisser, S., The predictive sample reuse method with applications (1975) Journal of the American Statistical Association, 70 (350), pp. 320-328 | |
dc.relation.references | Gomez, M., De la Torre, J., Roman, I., Análisis de sensibilidad temporal de los modelos de predicción de solvencia: una aplicación a las pymes industria (2008) Revista Española de Financiacion y Contabilidad, 37 (137), pp. 85-111 | |
dc.relation.references | Hair, J., Ringle, C., Sarstedt, M., PLS-SEM: indeed a silver bullet (2011) Journal of Marketing Theory and Practice, 19 (2), pp. 139-152 | |
dc.relation.references | Henseler, J., Ringle, C., Sarstedt, M., A new criterion for assessing discriminant validity in variance-based structural equation modeling (2015) Journal of the Academy of Marketing Science, 1 (43), pp. 115-135 | |
dc.relation.references | Hoyle, R., (1995) Structural Equation Modeling: Thousand Oaks, , Estados Unidos: Sage | |
dc.relation.references | Hu, L., Bentler, P., Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification (1998) Psychological Methods, 3 (4), pp. 424-453 | |
dc.relation.references | Jones, S., Corporate bankruptcy prediction: a high dimensional analysis (2017) Review of Accounting Studies, 22 (3), pp. 1366-1422 | |
dc.relation.references | Kaplan, R., Norton, D., (2004) Strategy Maps: Converting Intangible Assets into Tangible Outcomes, , Harvard Business School Press, Boston, MA | |
dc.relation.references | Kim, M., Kang, D., Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction (2012) Expert Systems With Applications, 39 (10), pp. 9308-9314 | |
dc.relation.references | Kovacova, M., Kliestik, T., Kubala, P., Valaskova, K., Radišić, M., Borocki, J., Bankruptcy models: Verifying their validity as a predictor of corporate failure (2018) Polish Journal of Management Studies, 18 (1), pp. 167-179 | |
dc.relation.references | Laitinen, E., Suvas, A., Financial distress prediction in an international context: Moderating effects of Hofstede's original cultural dimensions (2016) Journal of Behavioral and Experimental Finance, 9, pp. 98-118. , https://doi.org/10.1016/j.jbef.2015.11.003 | |
dc.relation.references | Lu, C., Yang, A., Huang, J., Bankruptcy predictions for U.S. air carrier operations: a study of financial data (2015) Journal Of Economics & Finance, 39 (3), pp. 574-589 | |
dc.relation.references | Lukason, O., Camacho, M., Bankruptcy risk, its financial determinants and reporting delays: Do managers have anything to hide? (2019) Risks, 7 (3), pp. 1-15 | |
dc.relation.references | Manzaneque, M., Priego, A., Merino, E., Corporate governance effect on financial distress likelihood: Evidence from Spain (2016) Revista De Contabilidad, 19 (1), pp. 111-121 | |
dc.relation.references | Marcoulides, G., Saunders, C., PLS: A silver bullet? (2006) Management Information Systems Quarterly, 30 (2), pp. 3-9 | |
dc.relation.references | Mensah, Y., An Examination of the Stationarity of Multivariate Bankruptcy Prediction Models: A Methodological Study (1984) Journal of Accounting Research, 22 (1), pp. 380-395 | |
dc.relation.references | Mintzberg, H., Structure in 5's: A Synthesis of the Research on Organization Design (1980) Management Science, 26 (3), pp. 322-341 | |
dc.relation.references | Mora, A., Los modelos de predicción del fracaso empresarial: una aplicación empirica del logit (1994) Revista Española de Financiación y Contabilidad, 23 (78), pp. 203-233 | |
dc.relation.references | Mselmi, N., Lahiani, A., Hamza, T., Financial distress prediction: The case of French small and medium-sized firms (2017) International Review of Financial Analysis, 50, pp. 67-80 | |
dc.relation.references | Mures, M., García, A., Vallejo, M., Cross-industry analysis of business failure: differential factors (2012) Pecunia: Revista De La Facultad De Ciencias Económicas Y Empresariales, 1, pp. 53-83 | |
dc.relation.references | Nouri, B., Soltani, M., Designing a bankruptcy prediction model based on account, market and macroeconomic variables (Case Study: Cyprus Stock Exchange) (2016) Iranian Journal of Management Studies, 9 (1), pp. 125-147 | |
dc.relation.references | Nyitrai, T., Virág, M., The effects of handling outliers on the performance of bankruptcy prediction models (2019) Socio-Economic Planning Sciences, 67, pp. 34-42 | |
dc.relation.references | Palepu, K., Predicting takeover targets. A Methodological and Empirical Analysis (1986) Journal of Accounting and Economics, 8, pp. 3-35 | |
dc.relation.references | Peel, M., Peel, D., Pope, P., Main paper: Predicting corporate failure - Some results for the UK corporate sector (1986) Omega, 14 (1), pp. 5-12 | |
dc.relation.references | Reznakova, M., Karas, M., The prediction capabilities of bankruptcy models in a different environment: An example of the altman model under the conditions in the visegrad group countries (2015) Ekonomicky casopis, 63 (6), pp. 617-633 | |
dc.relation.references | Rodríguez, C., Maté, M., López, F., The Contagion on Business Failure by the Geographical Proximity: An Analysis with the Join-Count Tests in the Service Sector (2017) Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 23, pp. 75-95 | |
dc.relation.references | Rose, P., Andrews, W., Giroux, G., Predicting business failure: A macroeconomic perspective (1982) Journal of Accounting, Auditing and Finance, 6 (1), pp. 20-31 | |
dc.relation.references | Salehi, M., Shiri, M., Pasikhani, M., Predicting corporate financial distress using data mining techniques An application in Tehran Stock Exchange (2016) International Journal of Law and Management, 58 (2), pp. 216-230 | |
dc.relation.references | Serrano, C., Fuertes, Y., Gutiérrez, B., Online reporting by banks: A structural modelling approach (2007) Online Information Review, 31 (3), pp. 310-332 | |
dc.relation.references | Serrano, C., Fuertes, Y., Gutiérrez, B., Cuellar, B., Path modelling to bankruptcy: causes and symptoms of the banking crisis (2011) Applied Economics, 46 (31), pp. 3798-3811 | |
dc.relation.references | Serrano, C., Mar, C., Gallizo, J., Country and size effects in financial ratios: A European perspective (2005) Global Finance Journal, 16 (1), pp. 26-47 | |
dc.relation.references | Shi, L., Evans, J., Li, Y., A Systems Analysis of Drivers of Individual Bankruptcies (2018) Economic Papers, 37 (4), pp. 390-398 | |
dc.relation.references | Shie, F., Chen, M., Liu, Y., Prediction of corporate financial distress: an application of the America banking industry (2012) Neural Computing & Applications, 21 (7), pp. 1687-1696 | |
dc.relation.references | Stone, M., Cross-validatory choice and assessment of statistical predictions (1974) Journal of the Royal Statistical Society: Series B, 36, pp. 111-147 | |
dc.relation.references | Tadesse, S., The economic value of regulated disclosure: evidence from the banking sector (2006) Journal of Accounting and Public Policy, 25 (1), pp. 32-70 | |
dc.relation.references | Tascon, M., Castaño, F., Variables and Models for the Identification and Prediction of Business Failure: Revision of Recent Empirical Research Advances (2012) Revista de Contabilidad, 15 (1), pp. 7-58 | |
dc.relation.references | Tenenhaus, M., Component-based Structural Equation Modelling (2008) Total Quality Management & Business Excellence, 19 (7), pp. 871-886. , (&8) | |
dc.relation.references | Turetsky, H., McEwen, R., An empirical investigation of firm longevity: A model of the Ex Ante predictors of financial distress (2001) Review Of Quantitative Finance And Accounting, 16 (4), pp. 323-343 | |
dc.relation.references | Wadas, H., Md-Rus, R., Predicting financial distress: Importance of accounting and firm-specific market variables for Pakistan's listed firms (2018) Cogent Economics and Finance, 6 (1), pp. 1-16 | |
dc.relation.references | Wang, G., Yang, S., Ma, J., An improved boosting based on feature selection for corporate bankruptcy prediction (2014) Expert Systems With Applications, 41 (5), pp. 2353-2361 | |
dc.relation.references | Zmijewski, M., Methodological Issues Related to the Estimation of Financial Distress Prediction Models (1984) Journal of Accounting Research, 22, pp. 59-82 | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1893]