Mostrar el registro sencillo del ítem

dc.contributor.authorAyús A.L.T
dc.contributor.authorArias G.C.V.
dc.date.accessioned2022-09-14T14:33:50Z
dc.date.available2022-09-14T14:33:50Z
dc.date.created2021
dc.identifier.issn1861042
dc.identifier.urihttp://hdl.handle.net/11407/7492
dc.description[No abstract available]eng
dc.language.isospa
dc.publisherUniversidad Nacional Autonoma de Mexico
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85099796637&doi=10.22201%2ffca.24488410e.2021.2618&partnerID=40&md5=eb2036e325141d5667c3489dbb4f8d44
dc.sourceContaduria y Administracion
dc.titleInfluencia del entorno financiero, el entorno macroeconómico, la estructura organizacional y la transparencia en la quiebra empresarial
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programAdministración de Empresas
dc.type.spaArtículo
dc.identifier.doi10.22201/fca.24488410e.2021.2618
dc.relation.citationvolume66
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ciencias Económicas y Administrativas
dc.affiliationAyús, A.L.T., Escuela de Administración, Finanzas e Instituto Tecnológico, Colombia
dc.affiliationArias, G.C.V., Universidad de Medellín, Colombia
dc.relation.referencesAcosta, E., Fernández, F., Ganga, H., Predicting corporate financial failure using macroeconomic variables and accounting data (2019) Computational Economics, 53 (1), pp. 227-257
dc.relation.referencesAffes, Z., Hentati, R., Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis (2017) Computational Economics
dc.relation.referencesAkhigbe, A., Martin, A., Valuation impact of Sarbanes-Oxley: Evidence from disclosure and governance within the financial services industry (2006) Journal of Banking & Finance, 30 (3), pp. 989-1006
dc.relation.referencesAlaminos, D., del Castillo, A., Fernandez, M., A Global Model for Bankruptcy Prediction (2016) Plos One, 11 (11), p. 18
dc.relation.referencesAlfaro, E., Gámez, M., García, N., Linear discriminant analysis versus adaboost for failure forecasting (2008) Revista Española de Financiación y Contabilidad, XXXVII (137), pp. 13-32
dc.relation.referencesAltman, E., Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy (1968) The Journal of Finance, 23 (4), pp. 589-609
dc.relation.referencesAltman, E., Iwanicz, M., Laitinen, E., Suvas, A., Financial Distress Prediction in an International Context: A Review and Empirical Analysis of Altman's Z-Score Model (2017) Journal of International Financial Management and Accounting, 28, pp. 131-171
dc.relation.referencesAmendola, A., Restaino, M., Sensini, L., An analysis of the determinants of financial distress in Italy: A competing risks approach (2015) International Review Of Economics And Finance, 37, pp. 33-41
dc.relation.referencesAntunes, F., Ribeiro, B., Pereira, F., Probabilistic modeling and visualization for bankruptcy prediction (2017) Applied Soft Computing
dc.relation.referencesAyadi, M., Lazrak, S., Xing, D., Bankruptcy protection duration and outcome of Canadian public firms (2019) International Journal of Managerial Finance, 15 (5), pp. 858-888
dc.relation.referencesBarboza, F., Kimura, H., Altman, E., Machine learning models and bankruptcy prediction (2017) Expert Systems With Applications, 83, pp. 405-417
dc.relation.referencesBeaver, W., Financial Ratios As Predictors of Failure (1966) Journal of Accounting Research, 4 (1), pp. 71-111
dc.relation.referencesBell, T., Neural Nets or the Logit Model? A Comparison of Each Model's Ability to Predict Commercial Bank Failures (1997) Intelligent Systems in Accounting, Finance and Management, 6, pp. 249-264
dc.relation.referencesBernanke, B., Gertler, M., Financial Fragility and Economic Performance (1990) The Quarterly Journal of Economics, 105 (1), pp. 87-114
dc.relation.referencesBernstein, S., Colonnelli, E., Giroud, X., Iverson, B., Bankruptcy spillovers (2019) Journal of Financial Economics, 133 (3), pp. 608-633
dc.relation.referencesBryant, J., A model of reserves, bank runs, and deposit insurance (1980) Journal of Banking and Finance, 4 (4), pp. 335-344
dc.relation.referencesBushman, R., Piotroski, J., Smith, A., What Determines Corporate Transparency? (2004) Journal of Accounting Research, 42 (2), pp. 207-252
dc.relation.referencesCaro, N., Guardiola, M., Ortiz, P., Árboles de clasificación como herramienta para predecir dificultades financieras en empresas Latinoamericanas a través de sus razones contables (2018) Contaduría y Administración, 63 (1), pp. 1-14
dc.relation.referencesChen, J., Marshall, B., Zhang, J., Ganesh, S., Financial Distress Prediction in China (2006) Review of Pacific Basin Financial Markets & Policies, 9 (2), pp. 317-336
dc.relation.referencesChin, W., Issues and Opinion on Structural Equation Modeling (1998) MIS Quarterly, 22 (1), pp. 1-110
dc.relation.referencesChou, C., Hsieh, S., Qiu, C., Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction (2017) Applied Soft Computing, 56, pp. 298-316
dc.relation.referencesCoase, R., The Nature of the Firm (1937) Economica, new series, 4 (16), pp. 386-405
dc.relation.referencesCondello, S., Del Pozzo, A., Loprevite, S., Potential and Limitations of D.E.A. as a Bankruptcy Prediction Tool in the Light of a Study on Italian Listed Companies (2017) Applied Mathematical Sciences, 11 (44), pp. 2185-2207
dc.relation.referencesDietrich, J., Discussion of Methodological Issues Related to the Estimation of Financial Distress Prediction Models (1984) Journal of Accounting Review, 22, pp. 83-86
dc.relation.referencesEijffinger, S., Geraats, P., How transparent are central banks? (2006) European Journal of Political Economy, 22 (1), pp. 1-21
dc.relation.referencesGarcía, J., Sánchez, J., Tomaseti, E., Fracaso empresarial y efectos contagio. Un análisis espacial para España (2016) Trimestre Económico, 83 (330), pp. 429-449
dc.relation.referencesGeisser, S., The predictive sample reuse method with applications (1975) Journal of the American Statistical Association, 70 (350), pp. 320-328
dc.relation.referencesGomez, M., De la Torre, J., Roman, I., Análisis de sensibilidad temporal de los modelos de predicción de solvencia: una aplicación a las pymes industria (2008) Revista Española de Financiacion y Contabilidad, 37 (137), pp. 85-111
dc.relation.referencesHair, J., Ringle, C., Sarstedt, M., PLS-SEM: indeed a silver bullet (2011) Journal of Marketing Theory and Practice, 19 (2), pp. 139-152
dc.relation.referencesHenseler, J., Ringle, C., Sarstedt, M., A new criterion for assessing discriminant validity in variance-based structural equation modeling (2015) Journal of the Academy of Marketing Science, 1 (43), pp. 115-135
dc.relation.referencesHoyle, R., (1995) Structural Equation Modeling: Thousand Oaks, , Estados Unidos: Sage
dc.relation.referencesHu, L., Bentler, P., Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification (1998) Psychological Methods, 3 (4), pp. 424-453
dc.relation.referencesJones, S., Corporate bankruptcy prediction: a high dimensional analysis (2017) Review of Accounting Studies, 22 (3), pp. 1366-1422
dc.relation.referencesKaplan, R., Norton, D., (2004) Strategy Maps: Converting Intangible Assets into Tangible Outcomes, , Harvard Business School Press, Boston, MA
dc.relation.referencesKim, M., Kang, D., Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction (2012) Expert Systems With Applications, 39 (10), pp. 9308-9314
dc.relation.referencesKovacova, M., Kliestik, T., Kubala, P., Valaskova, K., Radišić, M., Borocki, J., Bankruptcy models: Verifying their validity as a predictor of corporate failure (2018) Polish Journal of Management Studies, 18 (1), pp. 167-179
dc.relation.referencesLaitinen, E., Suvas, A., Financial distress prediction in an international context: Moderating effects of Hofstede's original cultural dimensions (2016) Journal of Behavioral and Experimental Finance, 9, pp. 98-118. , https://doi.org/10.1016/j.jbef.2015.11.003
dc.relation.referencesLu, C., Yang, A., Huang, J., Bankruptcy predictions for U.S. air carrier operations: a study of financial data (2015) Journal Of Economics & Finance, 39 (3), pp. 574-589
dc.relation.referencesLukason, O., Camacho, M., Bankruptcy risk, its financial determinants and reporting delays: Do managers have anything to hide? (2019) Risks, 7 (3), pp. 1-15
dc.relation.referencesManzaneque, M., Priego, A., Merino, E., Corporate governance effect on financial distress likelihood: Evidence from Spain (2016) Revista De Contabilidad, 19 (1), pp. 111-121
dc.relation.referencesMarcoulides, G., Saunders, C., PLS: A silver bullet? (2006) Management Information Systems Quarterly, 30 (2), pp. 3-9
dc.relation.referencesMensah, Y., An Examination of the Stationarity of Multivariate Bankruptcy Prediction Models: A Methodological Study (1984) Journal of Accounting Research, 22 (1), pp. 380-395
dc.relation.referencesMintzberg, H., Structure in 5's: A Synthesis of the Research on Organization Design (1980) Management Science, 26 (3), pp. 322-341
dc.relation.referencesMora, A., Los modelos de predicción del fracaso empresarial: una aplicación empirica del logit (1994) Revista Española de Financiación y Contabilidad, 23 (78), pp. 203-233
dc.relation.referencesMselmi, N., Lahiani, A., Hamza, T., Financial distress prediction: The case of French small and medium-sized firms (2017) International Review of Financial Analysis, 50, pp. 67-80
dc.relation.referencesMures, M., García, A., Vallejo, M., Cross-industry analysis of business failure: differential factors (2012) Pecunia: Revista De La Facultad De Ciencias Económicas Y Empresariales, 1, pp. 53-83
dc.relation.referencesNouri, B., Soltani, M., Designing a bankruptcy prediction model based on account, market and macroeconomic variables (Case Study: Cyprus Stock Exchange) (2016) Iranian Journal of Management Studies, 9 (1), pp. 125-147
dc.relation.referencesNyitrai, T., Virág, M., The effects of handling outliers on the performance of bankruptcy prediction models (2019) Socio-Economic Planning Sciences, 67, pp. 34-42
dc.relation.referencesPalepu, K., Predicting takeover targets. A Methodological and Empirical Analysis (1986) Journal of Accounting and Economics, 8, pp. 3-35
dc.relation.referencesPeel, M., Peel, D., Pope, P., Main paper: Predicting corporate failure - Some results for the UK corporate sector (1986) Omega, 14 (1), pp. 5-12
dc.relation.referencesReznakova, M., Karas, M., The prediction capabilities of bankruptcy models in a different environment: An example of the altman model under the conditions in the visegrad group countries (2015) Ekonomicky casopis, 63 (6), pp. 617-633
dc.relation.referencesRodríguez, C., Maté, M., López, F., The Contagion on Business Failure by the Geographical Proximity: An Analysis with the Join-Count Tests in the Service Sector (2017) Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 23, pp. 75-95
dc.relation.referencesRose, P., Andrews, W., Giroux, G., Predicting business failure: A macroeconomic perspective (1982) Journal of Accounting, Auditing and Finance, 6 (1), pp. 20-31
dc.relation.referencesSalehi, M., Shiri, M., Pasikhani, M., Predicting corporate financial distress using data mining techniques An application in Tehran Stock Exchange (2016) International Journal of Law and Management, 58 (2), pp. 216-230
dc.relation.referencesSerrano, C., Fuertes, Y., Gutiérrez, B., Online reporting by banks: A structural modelling approach (2007) Online Information Review, 31 (3), pp. 310-332
dc.relation.referencesSerrano, C., Fuertes, Y., Gutiérrez, B., Cuellar, B., Path modelling to bankruptcy: causes and symptoms of the banking crisis (2011) Applied Economics, 46 (31), pp. 3798-3811
dc.relation.referencesSerrano, C., Mar, C., Gallizo, J., Country and size effects in financial ratios: A European perspective (2005) Global Finance Journal, 16 (1), pp. 26-47
dc.relation.referencesShi, L., Evans, J., Li, Y., A Systems Analysis of Drivers of Individual Bankruptcies (2018) Economic Papers, 37 (4), pp. 390-398
dc.relation.referencesShie, F., Chen, M., Liu, Y., Prediction of corporate financial distress: an application of the America banking industry (2012) Neural Computing & Applications, 21 (7), pp. 1687-1696
dc.relation.referencesStone, M., Cross-validatory choice and assessment of statistical predictions (1974) Journal of the Royal Statistical Society: Series B, 36, pp. 111-147
dc.relation.referencesTadesse, S., The economic value of regulated disclosure: evidence from the banking sector (2006) Journal of Accounting and Public Policy, 25 (1), pp. 32-70
dc.relation.referencesTascon, M., Castaño, F., Variables and Models for the Identification and Prediction of Business Failure: Revision of Recent Empirical Research Advances (2012) Revista de Contabilidad, 15 (1), pp. 7-58
dc.relation.referencesTenenhaus, M., Component-based Structural Equation Modelling (2008) Total Quality Management & Business Excellence, 19 (7), pp. 871-886. , (&8)
dc.relation.referencesTuretsky, H., McEwen, R., An empirical investigation of firm longevity: A model of the Ex Ante predictors of financial distress (2001) Review Of Quantitative Finance And Accounting, 16 (4), pp. 323-343
dc.relation.referencesWadas, H., Md-Rus, R., Predicting financial distress: Importance of accounting and firm-specific market variables for Pakistan's listed firms (2018) Cogent Economics and Finance, 6 (1), pp. 1-16
dc.relation.referencesWang, G., Yang, S., Ma, J., An improved boosting based on feature selection for corporate bankruptcy prediction (2014) Expert Systems With Applications, 41 (5), pp. 2353-2361
dc.relation.referencesZmijewski, M., Methodological Issues Related to the Estimation of Financial Distress Prediction Models (1984) Journal of Accounting Research, 22, pp. 59-82
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem