Show simple item record

dc.contributor.authorMedellín-Castillo N.A
dc.contributor.authorOcampo-Pérez R
dc.contributor.authorForgionny A
dc.contributor.authorLabrada-Delgado G.J
dc.contributor.authorZárate-Guzmán A.I
dc.contributor.authorCruz-Briano S.A
dc.contributor.authorFlores-Ramírez R.
dc.date.accessioned2022-09-14T14:33:51Z
dc.date.available2022-09-14T14:33:51Z
dc.date.created2021
dc.identifier.issn22279717
dc.identifier.urihttp://hdl.handle.net/11407/7497
dc.descriptionIn the present work, the preparation of activated carbon pellets from cigarette butts by thermal treatment was evaluated. The morphological, textural, topological, and surface chemical properties were studied by SEM-EDX, N2 adsorption, Raman, and FTIR spectroscopy. For adsorption assays, activated carbon was tested for the adsorption of phenol as a model molecule at different solution pH, temperature, and type of water. In addition, leaching tests before and after carbonization were conducted to evaluate the lixiviation of ions present in the solid. The results revealed a microporous material, composed of cylindrical fibers (thickness of 13 µm) with a microporous area of 713 m2 /g and narrow and uniform slit-shaped pores (0.4–0.8 nm). The surface chemistry analysis evidenced the presence of oxygenated groups (carboxylic, esters, and phenolics). Activated carbon leaching tests indicated that the concentrations of the leached ions did not exceed the maximum permissible limit for drinking water. Phenol adsorption revealed an exothermic process with a maximum adsorption capacity of 272 mg/g at 10◦ C. Finally, it was confirmed that phenol diffusion was drastically affected by hindered phenomena due to the similarity in the molecular size of phenol and the average size of micropores, and as a result an effective diffusion coefficient between 6.10 × 10−0 and 5.50 × 10−12 cm2 /s and a maximum tortuosity value of 3.3 were obtained. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85107806774&doi=10.3390%2fpr9060934&partnerID=40&md5=c879eb9651214ea0a6b5f91838679b8e
dc.sourceProcesses
dc.titleInsights into equilibrium and adsorption rate of phenol on activated carbon pellets derived from cigarette butts
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.3390/pr9060934
dc.subject.keywordActivated carboneng
dc.subject.keywordAdsorptioneng
dc.subject.keywordCigarette buttseng
dc.subject.keywordFiltereng
dc.subject.keywordPhenoleng
dc.relation.citationvolume9
dc.relation.citationissue6
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationMedellín-Castillo, N.A., Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 8, San Luis Potosí, 78290, Mexico, Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 201, San Luis Potosí, 78210, Mexico
dc.affiliationOcampo-Pérez, R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationForgionny, A., Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 55450, Colombia
dc.affiliationLabrada-Delgado, G.J., División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, 78216, Mexico
dc.affiliationZárate-Guzmán, A.I., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationCruz-Briano, S.A., Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 201, San Luis Potosí, 78210, Mexico
dc.affiliationFlores-Ramírez, R., Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 201, San Luis Potosí, 78210, Mexico
dc.relation.referencesMarinello, S., Lolli, F., Gamberini, R., Rimini, B., A second life for cigarette butts? A review of recycling solutions (2020) J. Hazard. Mater, 384, p. 121245. , [CrossRef] [PubMed]
dc.relation.referencesKurmus, H., Mohajerani, A., The toxicity and valorization options of cigarette butts (2020) Waste Manag, 104, pp. 104-118. , [CrossRef] [PubMed]
dc.relation.referencesAraújo, M.C.B., Costa, M.F., A critical review of the issue of cigarette butt pollution in coastal environments (2019) Environ. Res, 172, pp. 137-149. , [CrossRef]
dc.relation.referencesAlhokbany, N.S., Naushad, M., Kumar, V., Al hatim, S., Alshehri, S.M., Ahamad, T., Self-nitrogen doped carbons aerogel derived from waste cigarette butts (cellulose acetate) for the adsorption of BPA: Kinetics and adsorption mechanisms (2020) J. King Saud Univ. Sci, 32, pp. 3351-3358. , [CrossRef]
dc.relation.referencesAbu-Danso, E., Bagheri, A., Bhatnagar, A., Facile functionalization of cellulose from discarded cigarette butts for the removal of diclofenac from water (2019) Carbohydr. Polym, 219, pp. 46-55. , [CrossRef]
dc.relation.referencesAldieri, L., Ioppolo, G., Vinci, C.P., Yigitcanlar, T., Waste recycling patents and environmental innovations: An economic analysis of policy instruments in the USA, Japan and Europe (2019) Waste Manag, 95, pp. 612-619. , [CrossRef]
dc.relation.referencesConradi, E., Gonçalves, A.C., Schwantes, D., Manfrin, J., Schiller, A., Zimmerman, J., Klassen, G.J., Ziemer, G.L., Development of renewable adsorbent from cigarettes for lead removal from water (2019) J. Environ. Chem. Eng, 7. , [CrossRef]
dc.relation.referencesLima, H.H.C., Maniezzo, R.S., Kupfer, V.L., Guilherme, M.R., Moises, M.P., Arroyo, P.A., Rinaldi, A.W., Hydrochars based on cigarette butts as a recycled material for the adsorption of pollutants (2018) J. Environ. Chem. Eng, 6, pp. 7054-7061. , [CrossRef]
dc.relation.referencesManfrin, J., Gonçalves, A.C., Schwantes, D., Conradi, E., Zimmermann, J., Ziemer, G.L., Development of biochar and activated carbon from cigarettes wastes and their applications in Pb2+ adsorption (2021) J. Environ. Chem. Eng, 9, p. 104980. , [CrossRef]
dc.relation.referencesLv, S., Li, C., Mi, J., Meng, H., A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA−4Na-modification (2020) Appl. Surf. Sci, 510, p. 145425. , [CrossRef]
dc.relation.referencesAlves, D.C.S., Coseglio, B.B., Pinto, L.A.A., Cadaval, T.R.S., Development of Spirulina/chitosan foam adsorbent for phenol adsorption (2020) J. Mol. Liq, 309, p. 113256. , [CrossRef]
dc.relation.referencesKoochaki, C.B., Khajavi, R., Rashidi, A., Mansouri, N., Yazdanshenas, M.E., The effect of pre-swelling on the characteristics of obtained activated carbon from cigarette butts fibers (2020) Biomass Convers. Biorefinery, 10, pp. 227-236. , [CrossRef]
dc.relation.referencesBardestani, R., Patience, G.S., Kaliaguine, S., Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT (2019) Can. J. Chem. Eng, 97, pp. 2781-2791. , [CrossRef]
dc.relation.referencesBachmann, H.J., Bucheli, T.D., Dieguez-Alonso, A., Fabbri, D., Knicker, H., Schmidt, H.P., Ulbricht, A., Buerge, D., Toward the standardization of biochar analysis: The COST action TD1107 interlaboratory comparison (2016) J. Agric. Food Chem, 64, pp. 513-527. , [CrossRef]
dc.relation.referencesMoreno-Castilla, C., Rivera-Utrilla, J., Carrasco-Marín, F., López-Ramón, M.V., On the carbon dioxide and benzene adsorption on activated carbons to study their micropore structure (1997) Langmuir, 13, pp. 5208-5209. , [CrossRef]
dc.relation.referencesLanders, J., Gor, G.Y., Neimark, A.V., Density functional theory methods for characterization of porous materials (2013) Colloids Surf. A Physicochem. Eng. Asp, 437, pp. 3-32. , [CrossRef]
dc.relation.referencesBoehm, H.P., Some aspects of the surface chemistry of carbon blacks and other carbons (1994) Carbon N. Y, 32, pp. 759-769. , [CrossRef]
dc.relation.referencesLorenc-grabowska, E., Effect of micropore size distribution on phenol adsorption on steam activated carbons (2016) Adsorption, 22, pp. 599-607. , [CrossRef]
dc.relation.referencesLeyva-Ramos, R., Ocampo-Perez, R., Mendoza-Barron, J., External mass transfer and hindered diffusion of organic compounds in the adsorption on activated carbon cloth (2012) Chem. Eng. J, 183, pp. 141-151. , [CrossRef]
dc.relation.referencesOcampo-Perez, R., Leyva-Ramos, R., Alonso-Davila, P., Rivera-Utrilla, J., Sanchez-Polo, M., Modeling adsorption rate of pyridine onto granular activated carbon (2010) Chem. Eng. J, 165, pp. 133-141. , [CrossRef]
dc.relation.referencesMasoudi Soltani, S., Yazdi, S.K., Hosseini, S., Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters (2014) Appl. Nanosci, 4, pp. 551-569. , [CrossRef]
dc.relation.referencesLowell, S., Shields, J.E., Thomas, M.A., Thommes, M., Adsorption isotherms (2004) Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density
dc.relation.referencesParticle Technology Series, , Springer: Dordrecht, The Netherlands
dc.relation.referencesMiao, Q., Tang, Y., Xu, J., Liu, X., Xiao, L., Chen, Q., Activated carbon prepared from soybean straw for phenol adsorption (2013) J. Taiwan Inst. Chem. Eng, 44, pp. 458-465. , [CrossRef]
dc.relation.referencesLütke, S.F., Igansi, A.V., Pegoraro, L., Dotto, G.L., Pinto, L.A.A., Cadaval, T.R.S., Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption (2019) J. Environ. Chem. Eng, 7, p. 103396. , [CrossRef]
dc.relation.referencesRomero-Cano, L.A., García-Rosero, H., Gonzalez-Gutierrez, L.V., Baldenegro-Pérez, L.A., Carrasco-Marín, F., Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution (2017) J. Clean. Prod, 162, pp. 195-204. , [CrossRef]
dc.relation.referencesKatepalli, H., Bikshapathi, M., Sharma, C.S., Verma, N., Sharma, A., Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications (2011) Chem. Eng. J, 171, pp. 1194-1200. , [CrossRef]
dc.relation.referencesLi, C., Ma, H., Venkateswaran, S., Hsiao, B.S., Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes / heavy metals ions (2020) Chem. Eng. J, 389, p. 123458. , [CrossRef]
dc.relation.referencesEl-Hendawy, A.N.A., Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions (2006) J. Anal. Appl. Pyrolysis, 75, pp. 159-166. , [CrossRef]
dc.relation.referencesPretsch, E., Badertscher, M., Buhlmann, P., (2009) Structure Determination of Organic Compounds, , 4th ed.
dc.relation.referencesSpringer: Berlin/Heidelberg, Germany, ISBN 9783540938095
dc.relation.references(1994) Secretaria de Salud NOM−127-SSA1−1994, pp. 73-79. , http://www.salud.gob.mx/unidades/cdi/nom/127ssa14.html, (accessed on 15 April 2021)
dc.relation.references(2017) Guidelines for Drinking-Water Quality, , https://www.who.int/publications/i/item/9789241549950, World Health Organization (WHO). 4th ed.
dc.relation.referencesISBN 9789241549950. (accessed on 15 April 2021)
dc.relation.referencesGiles, C.H., Smith, D., Huitson, A., A general treatment and classification of the solute adsorption isotherm. I. Theoretical (1974) J. Colloid Interface Sci, 47, pp. 755-765. , [CrossRef]
dc.relation.referencesZhang, D., Huo, P., Liu, W., Behavior of phenol adsorption on thermal modified activated carbon (2016) Chin. J. Chem. Eng, 24, pp. 446-452. , [CrossRef]
dc.relation.referencesSupong, A., Bhomick, P.C., Karmaker, R., Ezung, S.L., Jamir, L., Sinha, U.B., Sinha, D., Experimental and theoretical insight into the adsorption of phenol and 2,4-dinitrophenol onto Tithonia diversifolia activated carbon (2020) Appl. Surf. Sci, 529, p. 147046. , [CrossRef]
dc.relation.referencesKong, X., Gao, H., Song, X., Deng, Y., Zhang, Y., Adsorption of phenol on porous carbon from Toona sinensis leaves and its mechanism (2020) Chem. Phys. Lett, 739, p. 137046. , [CrossRef]
dc.relation.referencesLima, E.C., Hosseini-Bandegharaei, A., Moreno-Piraján, J.C., Anastopoulos, I., A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption (2019) J. Mol. Liq, 273, pp. 425-434. , [CrossRef]
dc.relation.referencesSummers, R.S., Haist, B., Koehler, J., Ritz, J., Zimmer, G., Sontheimer, H., The influence of background organic matter on GAC adsorption (1989) J. Am. Water Work. Assoc, 81, pp. 66-74. , [CrossRef]
dc.relation.referencesRodrigues, L.A., da Silva, M.L.C.P., Alvarez-Mendes, M.O., dos Reis Coutinho, A., Thim, G.P., Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds (2011) Chem. Eng. J, 174, pp. 49-57. , [CrossRef]
dc.relation.referencesFurusawa, T., Smith, J.M., Fluid—Particle and intraparticle mass transport rates in slurries (1973) Ind. Eng. Chem. Fundam, 12, pp. 197-203. , [CrossRef]
dc.relation.referencesMoreno-Pérez, J., Pauletto, P.S., Cunha, A.M., Bonilla-Petriciolet, Á., Salau, N.P.G., Dotto, G.L., Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite (2021) Colloids Surf. A Physicochem. Eng. Asp, p. 614. , [CrossRef]
dc.relation.referencesPauletto, P.S., Moreno-Pérez, J., Hernández-Hernández, L.E., Bonilla-Petriciolet, A., Dotto, G.L., Salau, N.P.G., Novel biochar and hydrochar for the adsorption of 2-nitrophenol from aqueous solutions: An approach using the PVSDM model (2021) Chemosphere, 269. , [CrossRef] [PubMed]
dc.relation.referencesFlores-Cano, J.V., Sánchez-Polo, M., Messoud, J., Velo-Gala, I., Ocampo-Pérez, R., Rivera-Utrilla, J., Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells (2016) J. Environ. Manage, 169, pp. 116-125. , [CrossRef]
dc.relation.referencesLeyva-Ramos, R., Geankoplis, C.J., Diffusion in liquid-filled pores of activated carbon. I. Pore volume diffusion (1994) Can. J. Chem. Eng, 72, pp. 262-271. , [CrossRef]
dc.relation.referencesPiai, L., Dykstra, J.E., Adishakti, M.G., Blokland, M., Langenhoff, A.A.M., van der Wal, A., Diffusion of hydrophilic organic micropollutants in granular activated carbon with different pore sizes (2019) Water Res, 162, pp. 518-527. , [CrossRef]
dc.relation.referencesLuna, F.M.T., Oliveira Filho, A.N., Araújo, C.C.B., Azevedo, D.C.S., Cavalcante, C.L., Adsorption of polycyclic aromatic hydrocarbons from heavy naphthenic oil using commercial activated carbons. 1. Fluid-Particle studies (2016) Ind. Eng. Chem. Res, 55, pp. 8176-8183. , [CrossRef]
dc.relation.referencesSatterfield, C.N., Colton, C.K., Pitcher, W.H., Restricted diffusion in liquids within fine pores (1973) AIChE J, 19, pp. 628-635. , [CrossRef]
dc.relation.referencesBungay, P.M., Brenner, H., The motion of a closely-fitting sphere in a fluid-filled tube (1973) Int. J. Multiph. Flow, 1, pp. 25-56. , [CrossRef]
dc.relation.referencesLeyva-Ramos, R., Diaz-Flores, P.E., Leyva-Ramos, J., Femat-Flores, R.A., Kinetic modeling of pentachlorophenol adsorption from aqueous solution on activated carbon fibers (2007) Carbon N. Y, 45, pp. 2280-2289. , [CrossRef]
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record