dc.contributor.author | Bjerregaard-Andersen K | |
dc.contributor.author | Abraha F | |
dc.contributor.author | Johannesen H | |
dc.contributor.author | Oscarson S | |
dc.contributor.author | Moreno E | |
dc.contributor.author | Krengel U. | |
dc.date.accessioned | 2022-09-14T14:33:51Z | |
dc.date.available | 2022-09-14T14:33:51Z | |
dc.date.created | 2021 | |
dc.identifier.issn | 9596658 | |
dc.identifier.uri | http://hdl.handle.net/11407/7502 | |
dc.description | Tumor-associated glycolipids such as NeuGc GM3 are auspicious molecular targets in antineoplastic therapies and vaccine strategies. 14F7 is a monoclonal IgG1 with high clinical potential in cancer immunotherapy as it displays extraordinary specificity for NeuGc GM3, while it does not recognize the very similar, ubiquitous NeuAc GM3. Here we present the 2.3 Å crystal structure of the 14F7 antigen-binding domain (14F7 scFv) in complex with the NeuGc GM3 trisaccharide. Modeling analysis and previous mutagenesis data suggest that 14F7 may also bind to an alternative NeuGc GM3 conformation, not observed in the crystal structure. The most intriguing finding, however, was that a water molecule centrally placed in the complementarity-determining region directly mediates the specificity of 14F7 to NeuGc GM3. This has profound impact on the complexity of engineering in the binding site and provides an excellent example of the importance in understanding the water structure in antibody-antigen interactions. © 2021 The Author(s) 2021. Published by Oxford University Press. | eng |
dc.language.iso | eng | |
dc.publisher | Oxford University Press | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125121145&doi=10.1093%2fglycob%2fcwab076&partnerID=40&md5=8dff4f59934144ae9223d584da733a63 | |
dc.source | Glycobiology | |
dc.title | Key role of a structural water molecule for the specificity of 14F7 - An antitumor antibody targeting the NeuGc GM3 ganglioside | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1093/glycob/cwab076 | |
dc.subject.keyword | Carbohydrate-antibody interactions | eng |
dc.subject.keyword | N-glycolyl GM3 | eng |
dc.subject.keyword | Protein-carbohydrate interactions | eng |
dc.subject.keyword | Water-mediated antibody specificity | eng |
dc.subject.keyword | Water-mediated interaction | eng |
dc.subject.keyword | X-ray crystal structure | eng |
dc.relation.citationvolume | 31 | |
dc.relation.citationissue | 11 | |
dc.relation.citationstartpage | 1500 | |
dc.relation.citationendpage | 1509 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Bjerregaard-Andersen, K., Department of Chemistry, University of Oslo, Oslo, NO-0315, Norway, H. Lundbeck A/S, Valby, Denmark | |
dc.affiliation | Abraha, F., School of Chemistry, University College Dublin, Belfield, Dublin, Ireland, Recipharm OT Chemistry, Uppsala, Sweden | |
dc.affiliation | Johannesen, H., Department of Chemistry, University of Oslo, Oslo, NO-0315, Norway, Department of Biosciences, University of Oslo, Oslo, NO-0316, Norway | |
dc.affiliation | Oscarson, S., School of Chemistry, University College Dublin, Belfield, Dublin, Ireland | |
dc.affiliation | Moreno, E., Department of Chemistry, University of Oslo, Oslo, NO-0315, Norway, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.affiliation | Krengel, U., Department of Chemistry, University of Oslo, Oslo, NO-0315, Norway | |
dc.relation.references | Adams, PD, Afonine, PV, Bunkóczi, G, Chen, VB, Davis, IW, Echols, N, Headd, JJ, Grosse-Kunstleve, RW, PHENIX: A comprehensive Python-based system for macromolecular structure solution (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 213-221 | |
dc.relation.references | Alisson-Silva, F, Kawanishi, K, Varki, A., Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid (2016) Mol Aspects Med, 51, pp. 16-30 | |
dc.relation.references | Bellissent-Funel, M-C, Hassanali, A, Havenith, M, Henchman, R, Pohl, P, Sterpone, F, van der Spoel, D, Garcia, AE., Water determines the structure and dynamics of proteins (2016) Chem Rev, 116, pp. 7673-7697 | |
dc.relation.references | Bjerregaard-Andersen, K, Johannesen, H, Abdel-Rahman, N, Heggelund, JE, Hoas, HM, Abraha, F, Bousquet, PA, Rojas, G, Crystal structure of an L chain optimised 14F7 antiganglioside Fv suggests a unique tumour-specificity through an unusual H-chain CDR3 architecture (2018) Sci Rep, 8, p. 10836 | |
dc.relation.references | Blanco, R, Rengifo, CE, Cedeño, M, Frómeta, M, Rengifo, E, Carr, A., Immunoreactivity of the 14F7 Mab (raised against N-glycolyl GM3 ganglioside) as a positive prognostic factor in non-small-cell lung cancer (2012) Patholog Res Int, 2012, p. 235418 | |
dc.relation.references | Bousquet, PA, Sandvik, JA, Jeppesen Edin, NF, Krengel, U., Hypothesis: Hypoxia induces de novo synthesis of NeuGc gangliosides in humans through CMAH domain substitute (2018) Biochem Biophys Res Commun, 495, pp. 1562-1566 | |
dc.relation.references | Braden, BC, Fields, BA, Poljak, RJ., Conservation of water molecules in an antibody-antigen interaction (1995) J Mol Recognit, 8, pp. 317-325 | |
dc.relation.references | Bremer, EG, Hakomori, S, Bowen-Pope, DF, Raines, E, Ross, R., Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation (1984) J Biol Chem, 259, pp. 6818-6825 | |
dc.relation.references | Carr, A, Mullet, A, Mazorra, Z, Vázquez, AM, Alfonso, M, Mesa, C, Rengifo, E, Fernández, LE., Amouse IgG1monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors (2000) Hybridoma, 19, pp. 241-247 | |
dc.relation.references | Carr, A, Mesa, C, del Carmen Arango, M, Vázquez, AM, Fernández, LE., In vivo and in vitro anti-tumor effect of 14F7 monoclonal antibody (2002) Hybrid Hybridomics, 21, pp. 463-468 | |
dc.relation.references | Cheng, X, Smith, JC., Biological membrane organization and cellular signaling (2019) Chem Rev, 119, pp. 5849-5880 | |
dc.relation.references | Chou, H-H, Takematsu, H, Diaz, S, Iber, J, Nickerson, E, Wright, KL, Muchmore, EA, Varki, A., A mutation in human CMPsialic acid hydroxylase occurred after the Homo-Pan divergence (1998) Proc Natl Acad Sci U S A, 95, pp. 11751-11756 | |
dc.relation.references | Cohen, GH, Silverton, EW, Padlan, EA, Dyda, F, Wibbenmeyer, JA, Willson, RC, Davies, DR., Water molecules in the antibody-antigen interface of the structure of the Fab HyHEL-5-lysozyme complex at 1.7 A resolution: Comparison with results from isothermal titration calorimetry (2005) Acta Crystallogr D Biol Crystallogr, 61, pp. 628-633 | |
dc.relation.references | DeMarcoML, Woods, RJ., Atomic-resolution conformational analysis of the GM3 ganglioside in a lipid bilayer and its implications for ganglioside-protein recognition at membrane surfaces (2009) Glycobiology, 19, pp. 344-355 | |
dc.relation.references | Dennis, JW, Lafertè, S, Waghorne, C, Breitman, ML, Kerbel, RS., β1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis (1987) Science, 236, pp. 582-585 | |
dc.relation.references | Dhar, C, Sasmal, A, Varki, A., From "serum sickness" to "xenosialitis": Past, present, and future significance of the non-human sialic acid Neu5Gc (2019) Front Immunol, 10, p. 807 | |
dc.relation.references | Dorvignit, D, Boligan, KF, Relova-Hernández, E, Clavell, M, López, A, Labrada, M, Simon, H-U, von Gunten, S., Antitumor effects of the GM3(Neu5Gc) ganglioside-specific humanized antibody 14F7hT against Cmah-transfected cancer cells (2019) Sci Rep, 9, p. 9921 | |
dc.relation.references | Durec, M, Marek, R, Kozelka, J., Water-tryptophan interactions: Lone-pairπ or O-Hπ? Molecular dynamics simulations of β-galactosidase suggest that both modes can co-exist (2018) Chemistry, 24, pp. 5849-5859 | |
dc.relation.references | Emsley, P, Lohkamp, B, Scott, WG, Cowtan, K., Features and development of Coot (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 486-501 | |
dc.relation.references | Fernández-Marrero, Y, Roque-Navarro, L, Hernández, T, Dorvignit, D, Molina-Pèrez, M, González, A, Sosa, K, Mateo de Acosta, C., A cytotoxic humanized anti-ganglioside antibody produced in a murine cell line defective of N-glycolylated-glycoconjugates (2011) Immunobiology, 216, pp. 1239-1247 | |
dc.relation.references | Gierszal, KP, Davis, JG, Hands, MD, Wilcox, DS, Slipchenko, LV, Ben-Amotz, D., I-hydrogen bonding in liquidwater (2011) Phys Chem Lett, 2, pp. 2930-2933 | |
dc.relation.references | Gunnarsen, KS, Lunde, E, Kristiansen, PE, Bogen, B, Sandlie, I, Loset, GA., Periplasmic expression of soluble single chain T cell receptors is rescued by the chaperone FkpA (2010) BMC Biotechnol, 10, p. 8 | |
dc.relation.references | Hakomori, S., Tumor-associated carbohydrate antigens defining tumor malignancy: Basis for development of anti-cancer vaccines (2001) The molecular immunology of complex carbohydrates-2. Advances in experimental medicine and biology, pp. 369-402. , Wu AM, editor. Boston (MA): Springer | |
dc.relation.references | Hakomori, S., The glycosynapse (2002) Proc Natl Acad Sci U S A, 99, p. 225. , 232 | |
dc.relation.references | Holmner, A, Lebens, M, Teneberg, S, Angstrom, J, Okvist, M, Krengel, U., Novel binding site identified in a hybrid between cholera toxin and heatlabile enterotoxin: 1.9 A crystal structure reveals the details (2004) Structure, 12, p. 1655. , 1667 | |
dc.relation.references | Horita, S, Nomura, Y, Sato, Y, Shimamura, T, Iwata, S, Nomura, N., Highresolution crystal structure of the therapeutic antibody pembrolizumab bound to the human PD-1 (2016) Sci Rep, 6, p. 35297 | |
dc.relation.references | Humphrey, W, Dalke, A, Schulten, K., VMD: Visual molecular dynamics (1996) J Mol Graph, 14, p. 33. , 38 | |
dc.relation.references | Hutchins, LF, Makhoul, I, Emanuel, PD, Pennisi, A, Siegel, ER, Jousheghany, F, Guo, X, Kieber-Emmons, T., Targeting tumor-associated carbohydrate antigens: A phase I study of a carbohydrate mimetic-peptide vaccine in stage IV breast cancer subjects (2017) Oncotarget, 8. , 99161.99178 | |
dc.relation.references | Incardona, M-F, Bourenkov, GP, Levik, K, Pieritz, RA, Popov, AN, Svensson, O., EDNA: A framework for plugin-based applications applied to Xray experiment online data analysis (2009) J Synchrotron Radiat, 16, p. 872. , 879 | |
dc.relation.references | Irie, A, Koyama, S, Kozutsumi, Y, Kawasaki, T, Suzuki, A., The molecular basis for the absence of N-glycolylneuraminic acid in humans (1998) J Biol Chem, 273, p. 15866. , 15871 | |
dc.relation.references | Janin, J., Wet and dry interfaces: The role of solvent in protein.protein and protein-DNA recognition (1999) Structure, 7, p. R277R279 | |
dc.relation.references | Klokk, TI, Kavaliauskiene, S, Sandvig, K., Cross-linking of glycosphingolipids at the plasma membrane: Consequences for intracellular signaling and traffic (2016) Cell Mol Life Sci, 73, p. 1301. , 1316 | |
dc.relation.references | Krengel, U, Olsson, L-L, Martinez, C, Talavera, A, Rojas, G, Mier, E, Angstrom, J, Moreno, E., Structure and molecular interactions of a unique antitumor antibody specific for N-glycolyl GM3 (2004) J Biol Chem, 279, p. 5597. , 5603 | |
dc.relation.references | Krengel, U, Bousquet, PA., Molecular recognition of gangliosides and their potential for cancer immunotherapies (2014) Front Immunol, 5, p. 325 | |
dc.relation.references | Labrada, M, Dorvignit, D, Hevia, G, Rodriguez-Zhurbenko, N, Hernandez, AM, Vazquez, AM, Fernandez, LE., GM3(Neu5Gc) ganglioside: An evolution fixed neoantigen for cancer immunotherapy (2018) Semin Oncol, 45. , 41.51 | |
dc.relation.references | Lahera, T, Calvo, A, Torres, G, Rengifo, CE, Quintero, S, del Carmen Arango, M, Danta, D, Carr, A., Prognostic role of 14F7Mab immunoreactivity againstN-glycolyl GM3 ganglioside in colon cancer (2014) J Oncol, 2014, p. 482301 | |
dc.relation.references | Levy, Y, Onuchic, JN., Water mediation in protein folding and molecular recognition (2006) Annu Rev Biophys Biomol Struct, 35, pp. 389-415 | |
dc.relation.references | Loset, GA, Lobersli, I, Kavlie, A, Stacy, JE, Borgen, T, Kausmally, L, Hvattum, E, Brekke, OH., Construction, evaluation and refinement of a large human antibody phage library based on the IgD and IgM variable gene repertoire (2005) J Immunol Methods, 299, p. 47. , 62 | |
dc.relation.references | Malykh, YN, Schauer, R, Shaw, L., N-glycolylneuraminic acid in human tumours (2001) Biochimie, 83, p. 623. , 634 | |
dc.relation.references | Marino, SF, Olal, D, Daumke, O., A complex water network contributes to high-affinity binding in an antibody.antigen interface (2016) Data Brief, 6, p. 394. , 397 | |
dc.relation.references | Moriarty, NW, Grosse-Kunstleve, RW, Adams, PD., Electronic Ligand Builder and Optimization Workbench (eLBOW): A tool for ligand coordinate and restraint generation (2009) Acta Crystallogr D Biol Crystallogr, 65, p. 1074. , 1080 | |
dc.relation.references | Oliva, JP, Valdes, Z, Casaco, A, Pimentel, G, Gonzalez, J, Alvarez, I, Osorio, M, Ortiz, R, Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer using the 14F7 monoclonal antibody labelled with 99mTc (2006) Breast Cancer Res Treat, 96, p. 115. , 121 | |
dc.relation.references | Peng, H-P, Lee, KH, Jian, J-W, Yang, A-S., Origins of specificity and affinity in antibody.protein interactions (2014) Proc Natl Acad Sci U S A, 111, p. E2656E2665 | |
dc.relation.references | Pochechueva, T, Jacob, F, Fedier, A, Heinzelmann-Schwarz, V., Tumorassociated glycans and their role in gynecological cancers: Accelerating translational research by novel high-throughput approaches (2012) Metabolites, 2, p. 913. , 939 | |
dc.relation.references | Rojas, G, Talavera, A, Munoz, Y, Rengifo, E, Krengel, U, Angstrom, J, Gavilondo, J, Moreno, E., Light-chain shuffling results in successful phage display selection of functional prokaryotic-expressed antibody fragments to N-glycolyl GM3 ganglioside (2004) J Immunol Methods, 293, p. 71. , 83 | |
dc.relation.references | Rojas, G, Pupo, A, Gomez, S, Krengel, U, Moreno, E., Engineering the binding site of an antibody against N-glycolyl GM3: From functional mapping to novel anti-ganglioside specificities (2013) ACS Chem Biol, 8, p. 376. , 386 | |
dc.relation.references | Roque-Navarro, L, Chakrabandhu, K, de Leon, J, Rodriguez, S, Toledo, C, Carr, A, de Acosta, CM, Perez, R., Anti-ganglioside antibodyinduced tumor cell death by loss of membrane integrity (2008) Mol Cancer Ther, 7, p. 2033. , 2041 | |
dc.relation.references | Scott, AM, Geleick, D, Rubira, M, Clarke, K, Nice, EC, Smyth, FE, Stockert, E, Harris, WJ, Construction, production, and characterization of humanized anti-Lewis Y monoclonal antibody 3S193 for targeted immunotherapy of solid tumors (2000) Cancer Res, 60, p. 3254. , 3261 | |
dc.relation.references | Siebert, H-C, Reuter, G, Schauer, R, von der Lieth, C-W, Dabrowski, J., Solution conformations of GM3 gangliosides containing different sialic acid residues as revealed by NOE-based distance mapping, molecular mechanics, and molecular dynamics calculations (1992) Biochemistry, 31, p. 6962. , 6971 | |
dc.relation.references | Torbidoni, AV, Scursoni, A, Camarero, S, Segatori, V, Gabri, M, Alonso, D, Chantada, G, de Davila, MTG., Immunoreactivity of the 14F7 Mab raised against N-glycolyl GM3 ganglioside in retinoblastoma tumours (2015) Acta Ophthalmol, 93, p. e294e300 | |
dc.relation.references | Varki, A., N-glycolylneuraminic acid deficiency in humans (2001) Biochimie, 83, pp. 615-622 | |
dc.relation.references | Weis, WI, Drickamer, K., Structural basis of lectin-carbohydrate recognition (1996) Annu Rev Biochem, 65, p. 441. , 473 | |
dc.relation.references | Yin, J, Hashimoto, A, Izawa, M, Miyazaki, K, Chen, G-Y, Takematsu, H, Kozutsumi, Y, Cheng, F-L, Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non.human sialic acid on human cancer cells (2006) Cancer Res, 66, p. 2937. , 2945 | |
dc.relation.references | Yu, AL, Gilman, AL, Ozkaynak, MF, London, WB, Kreissman, SG, Chen, HX, Smith, M, Matthay, KK, Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma (2010) N Engl J Med, 363, p. 1324. , 1334 | |
dc.relation.references | Yu, X, Coulson, BS, Fleming, FE, Dyason, JC, von Itzstein, M, Blanchard, H., Novel structural insights into rotavirus recognition of ganglioside glycan receptors (2011) J Mol Biol, 413, p. 929. , 939 | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |