Show simple item record

dc.contributor.authorRamirez-Velasquez I.M
dc.contributor.authorVelez E
dc.contributor.authorBedoya-Calle A
dc.contributor.authorCaro-Lopera F.J.
dc.date.accessioned2022-09-14T14:33:53Z
dc.date.available2022-09-14T14:33:53Z
dc.date.created2022
dc.identifier.issn14203049
dc.identifier.urihttp://hdl.handle.net/11407/7509
dc.descriptionBetanin and betanidin are compounds with extensive interest; they are effectively free radical scavengers. The present work aims to elucidate the differences between the mechanism of the antioxidant activity of betanin, betanidin, and their respective C15-epimers. Shape Theory establishes comparisons between the molecules’ geometries and determines parallelisms with the descriptors BDE, PA, ETE IP, PDE, and infrared spectra (IR) obtained from the molecule simulations. Furthermore, the molecules were optimized using the B3LYP/6-31+G(d,p) protocol. Finally, the molecular docking technique analyzes the antioxidant activity of the compounds in the complex with the therapeutic target xanthine oxidase (XO), based on a new proposal for the geometrical arrangement of the ligand atoms in the framework of Shape Theory. The results obtained indicate that the SPLET mechanism is the most favorable in all the molecules studied and that the first group that loses the hydrogen atom in the four molecules is the C17COOH, presenting less PA the isobetanidin. Furthermore, regarding the molecular docking, the interactions of these compounds with the target were favorable, standing out to a greater extent the interactions of isobetanidin with XO, which were analyzed after applying molecular dynamics. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85127471866&doi=10.3390%2fmolecules27062003&partnerID=40&md5=cfa4f8f3edc9a416a6bd41018d65f06b
dc.sourceMolecules
dc.titleMechanism of Antioxidant Activity of Betanin, Betanidin and Respective C15-Epimers via Shape Theory, Molecular Dynamics, Density Functional Theory and Infrared Spectroscopy
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.3390/molecules27062003
dc.subject.keywordAntioxidant mechanismseng
dc.subject.keywordDFT calculationseng
dc.subject.keywordMolecular dockingeng
dc.subject.keywordShape theoryeng
dc.relation.citationvolume27
dc.relation.citationissue6
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationRamirez-Velasquez, I.M., Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano ITM, Cll. 73 # 76A-354, Medellín, 050034, Colombia, Faculty of Basic Sciences, University of Medellin, Cra. 87 # 30-65, Medellín, 050026, Colombia
dc.affiliationVelez, E., Faculty of Basic Sciences, University of Medellin, Cra. 87 # 30-65, Medellín, 050026, Colombia
dc.affiliationBedoya-Calle, A., Faculty of Basic Sciences, University of Medellin, Cra. 87 # 30-65, Medellín, 050026, Colombia
dc.affiliationCaro-Lopera, F.J., Faculty of Basic Sciences, University of Medellin, Cra. 87 # 30-65, Medellín, 050026, Colombia
dc.relation.referencesApak, R., Current Issues in Antioxidant Measurement (2019) J. Agric. Food Chem, 67, pp. 9187-9202. , [CrossRef] [PubMed]
dc.relation.referencesKapadia, G.J., Rao, G.S., Anticancer Effects of Red Beet Pigments (2012) Red Beet Biotechnology, pp. 125-154. , Springer: Berlin/Heidelberg, Germany, [CrossRef]
dc.relation.referencesGandía-Herrero, F., García-Carmona, F., Biosynthesis of betalains: yellow and violet plant pigments (2013) Trends Plant Sci, 18, pp. 334-343. , [CrossRef] [PubMed]
dc.relation.referencesSlavov, A., Karagyozov, V., Denev, P., Kratchanova, M., Kratchanov, C., Antioxidant activity of red beet juices obtained after microwave and thermal pretreatments (2013) Czech J. Food Sci, 31, pp. 139-147. , [CrossRef]
dc.relation.referencesMereddy, R., Chan, A., Fanning, K., Nirmal, N., Sultanbawa, Y., Betalain rich functional extract with reduced salts and nitrate content from red beetroot (Beta vulgaris L.) using membrane separation technology (2017) Food Chem, 215, pp. 311-317. , [CrossRef]
dc.relation.referencesCortez, R., Luna-Vital, D.A., Margulis, D., de Mejia, E.G., Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications (2016) Compr. Rev. Food Sci. Food Saf, 16, pp. 180-198. , [CrossRef]
dc.relation.referencesStrack, D., Vogt, T., Schliemann, W., Recent advances in betalain research (2003) Phytochemistry, 62, pp. 247-269. , [CrossRef]
dc.relation.referencesEsatbeyoglu, T., Wagner, A.E., Schini-Kerth, V.B., Rimbach, G., Betanin-A food colorant with biological activity (2014) Mol. Nutr. Food Res, 59, pp. 36-47. , [CrossRef]
dc.relation.referencesKanner, J., Harel, S., Granit, R., BetalainsA New Class of Dietary Cationized Antioxidants (2001) J. Agric. Food Chem, 49, pp. 5178-5185. , [CrossRef]
dc.relation.referencesPrieto-Santiago, V., Cavia, M.M., Alonso-Torre, S.R., Carrillo, C., Relationship between color and betalain content in different thermally treated beetroot products (2020) J. Food Sci. Technol, 57, pp. 3305-3313. , [CrossRef]
dc.relation.referencesArdjani, A.T.E., Mekelleche, S.M., Analysis of the antioxidant activity of 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid derivatives using quantum-chemistry descriptors and molecular docking (2016) J. Mol. Model, 22. , [CrossRef]
dc.relation.referencesCao, H., Pauff, J.M., Hille, R., Substrate Orientation and Catalytic Specificity in the Action of Xanthine Oxidase (2010) J. Biol. Chem, 285, pp. 28044-28053. , [CrossRef] [PubMed]
dc.relation.referencesLin, H.C., Tsai, S.H., Chen, C.S., Chang, Y.C., Lee, C.M., Lai, Z.Y., Lin, C.M., Structure–activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities (2008) Biochem. Pharmacol, 75, pp. 1416-1425. , [CrossRef] [PubMed]
dc.relation.referencesOkamoto, K., Eger, B.T., Nishino, T., Kondo, S., Pai, E.F., Nishino, T., An Extremely Potent Inhibitor of Xanthine Oxidoreductase (2003) J. Biol. Chem, 278, pp. 1848-1855. , [CrossRef] [PubMed]
dc.relation.referencesFujishima, M.T., Silva, N., Ramos, R., Ferreira, E.B., Santos, K., Silva, C., Silva, J., Santos, C., An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella americana Linn (2018) Pharmaceuticals, 11, p. 72. , [CrossRef] [PubMed]
dc.relation.referencesGliszczyńska-Świgło, A., Szymusiak, H., Malinowska, P., Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity (2006) Food Addit. Contam, 23, pp. 1079-1087. , [CrossRef] [PubMed]
dc.relation.referencesDryden, I.L., Mardia, K.V., (2016) Statistical Shape Analysis, with Applications in R, , John Wiley & Sons, Ltd.: Hoboken, NJ, USA, [CrossRef]
dc.relation.referencesGoodall, C.R., Mardia, K.V., Multivariate Aspects of Shape Theory (1993) Ann. Stat, 21, pp. 848-866. , [CrossRef]
dc.relation.referencesCaro-Lopera, F.J., Díaz-García, J.A., González-Farías, G., Noncentral elliptical configuration density (2010) J. Multivar. Anal, 101, pp. 32-43. , [CrossRef]
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Estimation of mean form and mean form difference under elliptical laws (2017) Electron. J. Stat, 11, pp. 2424-2460. , [CrossRef]
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Elliptical affine shape distributions for real normed division algebras (2016) J. Multivar. Anal, 144, pp. 139-149. , [CrossRef]
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Generalised Shape Theory Via Pseudo-Wishart Distribution (2013) Sankhya A, 75, pp. 253-276. , [CrossRef]
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Statistical theory of shape under elliptical models and singular value decompositions (2012) J. Multivar. Anal, 103, pp. 77-92. , [CrossRef]
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Generalised shape theory via SV decomposition I (2010) Metrika, 75, pp. 541-565. , [CrossRef]
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Statistical theory of shape under elliptical models via QR decomposition (2013) Statistics, 48, pp. 456-472. , [CrossRef]
dc.relation.referencesVillarreal-Rios, A.L., Bedoya-Calle, Á.H., Caro-Lopera, F.J., Ortiz-Méndez, U., García-Méndez, M., Pérez-Ramírez, F.O., Ultrathin tunable conducting oxide films for near-IR applications: An introduction to spectroscopy shape theory (2019) SN Appl. Sci, 1, p. 1553. , [CrossRef]
dc.relation.referencesQuintero, J., Mariño, A., Šiller, L., Restrepo-Parra, E., Caro-Lopera, F., Rocking curves of gold nitride species prepared by arc pulsed-physical assisted plasma vapor deposition (2017) Surf. Coatings Technol, 309, pp. 249-257. , [CrossRef]
dc.relation.referencesArias, E., Caro-Lopera, F.J., Flórez, E., Pérez-Torres, J.F., Two Novel Approaches Based on the Thompson Theory and Shape Analysis for Determination of Equilibrium Structures of Nanoclusters: Cu8, Ag8 and Ag18 as study cases (2019) J. Physic. Conf. Ser, 1247, p. 012008. , [CrossRef]
dc.relation.referencesValencia, G.M., Anaya, J.A., Velásquez, É.A., Ramo, R., Caro-Lopera, F.J., About Validation-Comparison of Burned Area Products (2020) Remote. Sens, 12, p. 3972. , [CrossRef]
dc.relation.referencesNath, D., Laik, R., Meena, V.S., Pramanick, B., Singh, S.K., Can mid-infrared (mid-IR) spectroscopy evaluate soil conditions by predicting soil biological properties? Soil Secur, 2021, p. 100008. , [CrossRef]
dc.relation.referencesElderderi, S., Leman-Loubiere, C., Wils, L., Henry, S., Bertrand, D., Byrne, H.J., Chourpa, I., Elbashir, A.A., ATR-IR spectroscopy for rapid quantification of water content in deep eutectic solvents (2020) J. Mol. Liq, 311, p. 113361. , [CrossRef]
dc.relation.referencesVelkov, Z., Traykov, M., Trenchev, I., Saso, L., Tadjer, A., Topology-Dependent Dissociation Mode of the O–H Bond in Monohy-droxycoumarins (2019) J. Phys. Chem. A, 123, pp. 5106-5113. , [CrossRef]
dc.relation.referencesYusuff, O.K., Raheem, M.A.O.A., Mukadam, A.A., Sulaimon, R.O., Kinetics and Mechanism of the Antioxidant Activities of C. olitorius and V. amygdalina by Spectrophotometric and DFT Methods (2019) ACS Omega, 4, pp. 13671-13680. , [CrossRef] [PubMed]
dc.relation.referencesXue, Y., Zheng, Y., An, L., Dou, Y., Liu, Y., Density functional theory study of the structure–antioxidant activity of polyphenolic deoxybenzoins (2014) Food Chem, 151, pp. 198-206. , [CrossRef] [PubMed]
dc.relation.referencesDeepha, V., Praveena, R., Sadasivam, K., DFT studies on antioxidant mechanisms, electronic properties, spectroscopic (FT-IR and UV) and NBO analysis of C-glycosyl flavone, an isoorientin (2015) J. Mol. Struct, 1082, pp. 131-142. , [CrossRef]
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Nakatsuji, H., (2016) Gaussian 09, , https://gaussian.com/g09citation/, (accessed on 16 December 2021)
dc.relation.referencesKim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Bolton, E.E., PubChem in 2021: new data content and improved web interfaces (2020) Nucleic Acids Res, 49, pp. D1388-D1395. , [CrossRef] [PubMed]
dc.relation.referencesRodriguez, S.A., Baumgartner, M.T., Betanidin pKa Prediction Using DFT Methods (2020) ACS Omega, 5, pp. 13751-13759. , [CrossRef]
dc.relation.referencesKlein, E., Lukeš, V., Ilčin, M., DFT/B3LYP study of tocopherols and chromans antioxidant action energetics (2007) Chem. Phys, 336, pp. 51-57. , [CrossRef]
dc.relation.referencesCancès, E., Mennucci, B., Tomasi, J., A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics (1997) J. Chem. Phys, 107, pp. 3032-3041. , [CrossRef]
dc.relation.referencesCancès, E., Mennucci, B., Tomasi, J., Analytical derivatives for geometry optimization in solvation continuum models. II. Numerical applications (1998) J. Chem. Phys, 109, pp. 260-266. , [CrossRef]
dc.relation.referencesShireen, P.A., Muraleedharan, K., Mujeeb, V.A., Theoretical studies on anti-oxidant potential of alpinetin (2018) Mater. Today Proc, 5, pp. 8908-8915. , [CrossRef]
dc.relation.referencesMiller, F.A., Spectra of X-H Systems (with Emphasis on O-H and N-H Groups) (2004) Course Notes on the Interpretation of Infrared and Raman Spectra, pp. 163-178. , John Wiley & Sons, Inc.: Hoboken, NJ, USA, [CrossRef]
dc.relation.references(2018) R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing: Vienna, Austria
dc.relation.referencesTrott, O., Olson, A.J., AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading (2009) J. Comput. Chem, 31, pp. 455-461. , [CrossRef]
dc.relation.referencesMorris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility (2009) J. Comput. Chem, 30, pp. 2785-2791. , [CrossRef] [PubMed]
dc.relation.referencesEnroth, C., Eger, B.T., Okamoto, K., Nishino, T., Nishino, T., Pai, E.F., Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 10723-10728. , [CrossRef] [PubMed]
dc.relation.referencesHumphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) J. Mol. Graph, 14, pp. 33-38. , [CrossRef]
dc.relation.referencesLee, J., Cheng, X., Swails, J.M., Yeom, M.S., Eastman, P.K., Lemkul, J.A., Wei, S., Qi, Y., CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field (2016) J. Chem. Theory Comput, 12, pp. 405-413. , [CrossRef]
dc.relation.referencesJo, S., Kim, T., Iyer, V.G., Im, W., CHARMM-GUI: A web-based graphical user interface for CHARMM (2008) J. Comput. Chem, 29, pp. 1859-1865. , [CrossRef]
dc.relation.referencesGandía-Herrero, F., Escribano, J., García-Carmona, F., The Role of Phenolic Hydroxy Groups in the Free Radical Scavenging Activity of Betalains (2009) J. Nat. Prod, 72, pp. 1142-1146. , [CrossRef]
dc.relation.referencesGandía-Herrero, F., Escribano, J., García-Carmona, F., Structural implications on color, fluorescence, and antiradical activity in betalains (2010) Planta, 232, pp. 449-460. , [CrossRef]
dc.relation.referencesMusialik, M., Kuzmicz, R., Pawłowski, T.S., Litwinienko, G., Acidity of Hydroxyl Groups: An Overlooked Influence on Antiradical Properties of Flavonoids (2009) J. Org. Chem, 74, pp. 2699-2709. , [CrossRef]
dc.relation.referencesOprea, C.I., Dumbravă, A., Enache, I., Georgescu, A., Gîrţu, M.A., A combined experimental and theoretical study of natural betalain pigments used in dye-sensitized solar cells (2012) J. Photochem. Photobiol. A Chem, 240, pp. 5-13. , [CrossRef]
dc.relation.referencesQin, C., Clark, A.E., DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells (2007) Chem. Phys. Lett, 438, pp. 26-30. , [CrossRef]
dc.relation.referencesMunteanu, I.G., Apetrei, C., Analytical Methods Used in Determining Antioxidant Activity: A Review (2021) Int. J. Mol. Sci, 22, p. 3380. , [CrossRef] [PubMed]
dc.relation.referencesCraft, B.D., Kerrihard, A.L., Amarowicz, R., Pegg, R.B., Phenol-Based Antioxidants and the In Vitro Methods Used for Their Assessment (2012) Compr. Rev. Food Sci. Food Saf, 11, pp. 148-173. , [CrossRef]
dc.relation.referencesMiller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., Milner, A., A Novel Method for Measuring Antioxidant Capacity and its Application to Monitoring the Antioxidant Status in Premature Neonates (1993) Clin. Sci, 84, pp. 407-412. , [CrossRef] [PubMed]
dc.relation.referencesSmeriglio, A., Francesco, C.D., Denaro, M., Trombetta, D., Prickly Pear Betalain-Rich Extracts as New Promising Strategy for Intestinal Inflammation: Plant Complex vs. Main Isolated Bioactive Compounds (2021) Front. Pharmacol, 12. , [CrossRef] [PubMed]
dc.relation.referencesCalogero, G., Bartolotta, A., Di Marco, G., Di Carlo, A., Bonaccorso, F., Vegetable-based dye-sensitized solar cells (2015) Chem. Soc. Rev, 44, pp. 3244-3294. , [CrossRef]
dc.relation.referencesMayo, D.W., Survey of Infrared and Raman Group Frequencies (2004) Course Notes on the Interpretation of Infrared and Raman Spectra, pp. 355-398. , John Wiley & Sons, Inc.: Hoboken, NJ, USA, [CrossRef]
dc.relation.referencesEstrada–delaVega, A., Bedoya–Calle, Á.H., Diabb, J., Villarreal–Rios, A.L., Elías–Zuniga, A., López–Cuellar, E.M., Ortiz–Méndez, U., Preparation and characterization of lanthanum nitrate nanoparticles by a polyol method (2019) Mater. Res. Express, 6, p. 095030. , [CrossRef]
dc.relation.referencesSheppard, N., 50 Years in Vibrational Spectroscopy at the Gas/Solid Interface (2002) Surface Chemistry and Catalysis, pp. 27-54. , Springer: Berlin/Heidelberg, Germany, [CrossRef]
dc.relation.referencesKolev, T., Ivanova, B.B., Zareva, S.Y., An Au (III) complex of glycyl-S-serine: a linear polarized IR and 1H-and 13C-NMR investigation (2007) J. Coord. Chem, 60, pp. 109-115. , [CrossRef]
dc.relation.referencesMistry, B., (2009) A Handbook of Spectroscopic Data CHEMISTRY (UV, JR, PMR, JJCNMR and Mass Spectroscopy), , Oxford Book Company: Oxford, UK
dc.relation.referencesYang, J., Dong, C., Kirk, M.L., Xanthine oxidase–product complexes probe the importance of substrate/product orientation along the reaction coordinate (2017) Dalton Trans, 46, pp. 13242-13250. , [CrossRef]
dc.relation.referencesMalik, U.Z., Hundley, N.J., Romero, G., Radi, R., Freeman, B.A., Tarpey, M.M., Kelley, E.E., Febuxostat inhibition of endothelial-bound XO: Implications for targeting vascular ROS production (2011) Free Radic. Biol. Med, 51, pp. 179-184. , [CrossRef]
dc.relation.referencesSlimen, I.B., Najar, T., Abderrabba, M., Chemical and Antioxidant Properties of Betalains (2017) J. Agric. Food Chem, 65, pp. 675-689. , [CrossRef]
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record