Show simple item record

dc.contributor.authorAristizábal L.M
dc.contributor.authorZuluaga C.A
dc.contributor.authorRúa S
dc.contributor.authorVásquez R.E.
dc.descriptionThis paper addresses the development of a modular hardware architecture for the design/ construction/operation of a remotely operated vehicle (ROV), based on systems engineering. The Vee model is first presented as a sequential process that emphasizes the validation processes with stakeholders and verification plans in the development and production stages of the ROV’s life cycle. The conceptual design process starts with the mapping of user requirements to engineering specifications, using the House of Quality (HoQ), a quality function deployment tool that allows executing a functional-division-based hardware design process that facilitates the integration of components and subsystems, as desired for modular architectures. Then, the functional division and hardware architectures are described, and their connection is made through the proposed system architecture that sets the foundation for the definition of a physical architecture, as it involves flows that connect abstract functions with a real context. Development and production stages are exemplified through the design, construction, and integration of some hardware components needed for the remotely operated vehicle Pionero500, and the operational stage briefly describes the first sea trials conducted for the ROV. Systems engineering has shown to be a very useful tool for the development of marine vehicles and marine engineering projects that require modular architectures. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.publisherMDPI AG
dc.sourceJournal of Marine Science and Engineering
dc.titleModular hardware architecture for the development of underwater vehicles based on systems engineering
dc.publisher.programIngeniería de Telecomunicaciones
dc.subject.keywordHardware architectureeng
dc.subject.keywordMarine engineeringeng
dc.subject.keywordMarine roboticseng
dc.subject.keywordRemotely operated vehicleeng
dc.subject.keywordSystems engineeringeng
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationAristizábal, L.M., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.affiliationZuluaga, C.A., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.affiliationRúa, S., Electronics and Telecommunications Engineering Department, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationVásquez, R.E., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.relation.referencesMacreadie, P.I., McLean, D.L., Thomson, P.G., Partridge, J.C., Jones, D.O., Gates, A.R., Benfield, M.C., Smith, L.L., Eyes in the sea: Unlocking the mysteries of the ocean using industrial, remotely operated vehicles (ROVs) (2018) Sci. Total. Environ, 634, pp. 1077-1091
dc.relation.referencesCapocci, R., Dooly, G., Omerdić, E., Coleman, J., Newe, T., Toal, D., Inspection-Class Remotely Operated Vehicles-A Review (2017) J. Mar. Sci. Eng, 5, p. 13
dc.relation.referencesChoi, J., Park, J., Jung, J., Lee, Y., Choi, H.T., Development of an Autonomous Surface Vehicle and Performance Evaluation of Autonomous Navigation Technologies (2020) Int. J. Control. Autom. Syst, 18, pp. 535-545
dc.relation.referencesRamírez-Macías, J.A., Vásquez, R.E., Sørensen, A.J., Sævik, S., Motion Feasibility Framework for Remotely Operated Vehicles Based on Dynamic Positioning Capability (2021) J. Offshore Mech. Arct. Eng, p. 143
dc.relation.referencesYao, H., Wang, H., Li, Y., Wang, Y., Han, C., Research on Unmanned Underwater Vehicle Threat Assessment (2019) IEEE Access, 7, pp. 11387-11396
dc.relation.referencesBraginsky, B., Baruch, A., Guterman, H., Development of an Autonomous Surface Vehicle capable of tracking Autonomous Underwater Vehicles (2020) Ocean. Eng, 197, p. 106868
dc.relation.referencesSmolyaninov, I., Balzano, Q., Young, D., Development of Broadband Underwater Radio Communication for Application in Unmanned Underwater Vehicles (2020) J. Mar. Sci. Eng, 8, p. 370
dc.relation.referencesZolich, A., Johansen, T.A., Cisek, K., Klausen, K., Unmanned aerial system architecture for maritime missions. design & hardware description (2015) Proceedings of the 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS) IEEE, , Cancun, Mexico, 23-25 November
dc.relation.referencesSulligoi, G., Vicenzutti, A., Menis, R., All-Electric Ship Design: From Electrical Propulsion to Integrated Electrical and Electronic Power Systems (2016) IEEE Trans. Transp. Electrif, 2, pp. 507-521
dc.relation.referencesHachicha, S., Zaoui, C., Dallagi, H., Nejim, S., Maalej, A., Innovative design of an underwater cleaning robot with a two arm manipulator for hull cleaning (2019) Ocean Eng, 181, pp. 303-313
dc.relation.referencesSaravanan, K., Aswini, S., Kumar, R., Son, L.H., How to prevent maritime border collision for fisheries?-A design of Real-Time Automatic Identification System (2019) Earth Sci. Inform, 12, pp. 241-252
dc.relation.referencesMa, T., Liu, S., Xiao, H., Location of natural gas leakage sources on offshore platform by a multi-robot system using particle swarm optimization algorithm (2020) J. Nat. Gas Sci. Eng, 84, p. 103636
dc.relation.referencesUtter, B., Brown, A., Open-source five degree of freedom motion platform for investigating fish-robot interaction (2020) HardwareX, 7, p. e00107
dc.relation.referencesRibas, D., Ridao, P., Turetta, A., Melchiorri, C., Palli, G., Fernandez, J.J., Sanz, P.J., I-AUV Mechatronics Integration for the TRIDENT FP7 Project (2015) IEEE/ASME Trans. Mechatron, 20, pp. 2583-2592
dc.relation.referencesSpears, A., West, M., Meister, M., Buffo, J., Walker, C., Collins, T.R., Howard, A., Schmidt, B., Under Ice in Antarctica: The Icefin Unmanned Underwater Vehicle Development and Deployment (2016) IEEE Robot. Autom. Mag, 23, pp. 30-41
dc.relation.referencesJiang, C.M., Wan, L., Sun, Y.S., Design of motion control system of pipeline detection AUV (2017) J. Cent. South Univ, 24, pp. 637-646
dc.relation.referencesLi, Y., Guo, S., Wang, Y., Design and characteristics evaluation of a novel spherical underwater robot (2017) Robot. Auton. Syst, 94, pp. 61-74
dc.relation.referencesGelli, J., Meschini, A., Monni, N., Pagliai, M., Ridolfi, A., Marini, L., Allotta, B., Development and Design of a Compact Autonomous Underwater Vehicle: Zeno AUV (2018) IFAC-PapersOnLine, 51, pp. 20-25
dc.relation.referencesPugi, L., Allotta, B., Pagliai, M., Redundant and reconfigurable propulsion systems to improve motion capability of underwater vehicles (2018) Ocean Eng, 148, pp. 376-385
dc.relation.referencesHong, S., Chung, D., Kim, J., Kim, Y., Kim, A., Yoon, H.K., In-water visual ship hull inspection using a hover-capable underwater vehicle with stereo vision (2018) J. Field Robot, 36, pp. 531-546
dc.relation.referencesCosta, D., Palmieri, G., Palpacelli, M.C., Panebianco, L., Scaradozzi, D., Design of a Bio-Inspired Autonomous Underwater Robot (2018) J. Intell. Robot. Syst, 91, pp. 181-192
dc.relation.referencesIgnacio, L.C., Victor, R.R., Francisco, D.R.R., Pascoal, A., Optimized design of an autonomous underwater vehicle, for exploration in the Caribbean Sea (2019) Ocean Eng, 187, p. 106184
dc.relation.referencesXu, H., Zhang, G.C., Sun, Y.S., Pang, S., Ran, X.R., Wang, X.B., Design and Experiment of a Plateau Data-Gathering AUV (2019) J. Mar. Sci. Eng, 7, p. 376
dc.relation.referencesCozijn, H., van der Schaaf, H., de Kruif, B., Ypma, E., Design of an Underwater Vehicle for use in Basin Experiments, Development of MARIN’s Modular AUV (2019) IFAC-PapersOnLine, 52, pp. 21-26
dc.relation.referencesPinjare, N.S., Chaitra, S., Shraavan, S., Harshita, Naveen, I.G., Underwater remotely operated vehicle for surveillance and marine study (2017) Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT) IEEE, , Mysuru, India, 15-16 December
dc.relation.referencesCapocci, R., Omerdic, E., Dooly, G., Toal, D., Fault-Tolerant Control for ROVs Using Control Reallocation and Power Isolation (2018) J. Mar. Sci. Eng, 6, p. 40
dc.relation.referencesRozman, B.Y., Elkin, A.V., Kaptsov, A.S., Ermakov, I.D., Ermakov, D.I., Krasnov, V.G., Kondrashov, L.S., Upgrade of ROV Super GNOME Pro for Underwater Monitoring in the Caspian Sea (2018) Oceanology, 58, pp. 144-147
dc.relation.referencesZhang, Q., Wang, H., Li, B., Cui, S., Zhao, Y., Zhu, P., Sun, B., Li, S., Development and Sea Trials of a 6000m Class ROV for Marine Scientific Research (2018) Proceedings of the 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO) IEEE, , Kobe, Japan, 28-31 May
dc.relation.referencesKadiyam, J., Mohan, S., Conceptual design of a hybrid propulsion underwater robotic vehicle with different propulsion systems for ocean observations (2019) Ocean Eng, 182, pp. 112-125
dc.relation.referencesKong, F., Guo, Y., Lyu, W., Dynamics Modeling and Motion Control of an New Unmanned Underwater Vehicle (2020) IEEE Access, 8, pp. 30119-30126
dc.relation.referencesMadni, A.M., Sievers, M., Systems Integration: Key Perspectives, Experiences, and Challenges (2013) Syst. Eng, 17, pp. 37-51
dc.relation.referencesMadni, A.M., Sievers, M., Model-based systems engineering: Motivation, current status, and research opportunities (2018) Syst. Eng, 21, pp. 172-190
dc.relation.references(2017) NASA Systems Engineering Handbook: NASA/SP-2016-6105 Rev2 - Full Color Version, , NASA. 12th Media Services: Washington, DC, USA
dc.relation.referencesDove, R., Schindel, B., Scrapper, C., Agile Systems Engineering Process Features Collective Culture, Consciousness, and Conscience at SSC Pacific Unmanned Systems Group (2016) INCOSE Int. Symp, 26, pp. 982-1001
dc.relation.referencesEaton, C., Chong, E., Maciejewski, A., Multiple-Scenario Unmanned Aerial System Control: A Systems Engineering Approach and Review of Existing Control Methods (2016) Aerospace, 3, p. 1
dc.relation.referencesHien, N.V., Truong, V.T., Bui, N.T., An Object-Oriented Systems Engineering Point of View to Develop Controllers of Quadrotor Unmanned Aerial Vehicles (2020) Int. J. Aerosp. Eng, 2020, pp. 1-17
dc.relation.referencesWeinert, B., Hahn, A., Norkus, O., A domain-specific architecture framework for the maritime domain (2016) Informatik 2016, , P-259 ed.
dc.relation.referencesLecture Notes in Informatics
dc.relation.referencesHeinrich, C., Mayr, M.P., Eds.
dc.relation.referencesGesellschaft für Informatik: Boon, Germany
dc.relation.referencesFreire, L.O., Oliveira, L.M., Vale, R.T., Medeiros, M., Diana, R.E., Lopes, R.M., Pellini, E.L., de Barros, E.A., Development of an AUV control architecture based on systems engineering concepts (2018) Ocean Eng, 151, pp. 157-169
dc.relation.referencesHuang, P.M., Darrin, A.G., Knuth, A.A., Agile hardware and software system engineering for innovation (2012) Proceedings of the 2012 IEEE Aerospace Conference IEEE, , Big Sky, MT, USA, 3-10 March
dc.relation.referencesChennareddy, S.S.R., Agrawal, A., Karuppiah, A., Modular Self-Reconfigurable Robotic Systems: A Survey on Hardware Architectures (2017) J. Robot, 2017, pp. 1-19
dc.relation.referencesZamalloa, I., Muguruza, I., Hernández, A., Kojcev, R., Mayoral, V., (2018) An information model for modular robots: The Hardware Robot Information Model (HRIM), , Technical report, Erle Robotics. arXiv arXiv:1802.01459
dc.relation.referencesSeo, J., Paik, J., Yim, M., Modular Reconfigurable Robotics (2019) Annu. Rev. Control. Robot. Auton. Syst, 2, pp. 63-88
dc.relation.referencesGharbia, M., Chang-Richards, A., Lu, Y., Zhong, R.Y., Li, H., Robotic technologies for on-site building construction: A systematic review (2020) J. Build. Eng, 32, p. 101584
dc.relation.referencesGiordano, F., Mattei, G., Parente, C., Peluso, F., Santamaria, R., Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in ShallowWaters (2015) Sensors, 16, p. 41
dc.relation.referencesSarhadi, P., Noei, A.R., Khosravi, A., Model reference adaptive autopilot with anti-windup compensator for an autonomous underwater vehicle: Design and hardware in the loop implementation results (2017) Appl. Ocean. Res, 62, pp. 27-36
dc.relation.referencesMeschini, A., Ridolfi, A., Gelli, J., Pagliai, M., Rindi, A., Pressure Hull Design Methods for Unmanned Underwater Vehicles (2019) J. Mar. Sci. Eng, 7, p. 382
dc.relation.referencesSani, M.I., Siregar, S., Kurnia, M.M., Hasbialloh, D., An electrical power control system for explorer-class remotely operated underwater vehicle (ROV) (2019) TELKOMNIKA (Telecommun. Comput. Electron. Control.), 17, p. 928
dc.relation.referencesSun, Y., Ran, X., Zhang, G., Wu, F., Du, C., Distributed control system architecture for deep submergence rescue vehicles (2019) Int. J. Nav. Archit. Ocean. Eng, 11, pp. 274-284
dc.relation.referencesYu, C., Xiang, X., Maurelli, F., Zhang, Q., Zhao, R., Xu, G., Onboard system of hybrid underwater robotic vehicles: Integrated software architecture and control algorithm (2019) Ocean Eng, 187, p. 106121
dc.relation.referencesOdetti, A., Bruzzone, G., Altosole, M., Viviani, M., Caccia, M., SWAMP, an Autonomous Surface Vehicle expressly designed for extremely shallow waters (2020) Ocean Eng, 216, p. 108205
dc.relation.referencesBae, J.H., Min, B.C., Luo, S., Kannan, S.S., Singh, Y., Lee, B., Voyles, R.M., Aguilar, L.P., Development of an Unmanned Surface Vehicle for Remote Sediment Sampling with a Van Veen Grab Sampler (2019) Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE IEEE, , Seattle, WA, USA, 27-31 October
dc.relation.referencesPeeters, G., Baelen, S.V., Yayla, G., Catoor, T., Afzal, M.R., Christofakis, C., Louw, R., Boonen, R., Decoupled Hydrodynamic Models and Their Outdoor Identification for an Unmanned Inland Cargo Vessel with Embedded Fully Rotatable Thrusters (2020) J. Mar. Sci. Eng, 8, p. 889
dc.relation.referencesAristizabal, L.M., Rua, S., Zuluaga, C.A., Posada, N.L., Vasquez, R.E., Hardware and software development for the navigation, guidance, and control system of a remotely operated vehicle (2017) Proceedings of the 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC) IEEE, , Cartagena, Colombia, 18-20 October
dc.relation.referencesDieter, G., Schmidt, L., (2021) Engineering Design, , 6th ed.
dc.relation.referencesMcGraw-Hill Education: New York, NY, USA
dc.relation.references(2015) INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, , INCOSE. 4th ed.
dc.relation.referencesWiley: Hoboken, NJ, USA
dc.relation.referencesForsberg, K., Mooz, H., Cotterman, H., (2005) Visualizing Project Management: Models and Frameworks for Mastering Complex Systems, , 3rd ed.
dc.relation.referencesJ.Wiley: Hoboken, NJ, USA
dc.relation.references(2009) Systems Engineering Guidebook for Intelligent Transportation Systems, , Federal Highway Administration California Division. 3rd ed.
dc.relation.referencesUS Department of Transportation: Washington, DC, USA
dc.relation.referencesUllman, D., (2017) The Mechanical Design Process, , 6th ed.
dc.relation.referencesDavid Ullman LLC: Independence, OR, USA
dc.relation.references(2015) 15288-2015 - ISO/IEC/IEEE International Standard - Systems and Software Engineering-System Life Cycle Processes, , ISO/IEC/IEEE. 1st ed.
dc.relation.referencesIEEE: Piscataway, NJ, USA
dc.relation.referencesOsorio, S.P., Aristizabal, L.M., Zuluaga, C.A., Development of a command interface based on handheld devices for remotely operated vehicles (2016) Proceedings of the 2016 IEEE Colombian Conference on Robotics and Automation (CCRA) IEEE, , Bogota, Colombia, 29-30 September
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instnameinstname:Universidad de Medellín

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record