Mostrar el registro sencillo del ítem

dc.contributor.authorOrozco-Duque A
dc.contributor.authorUgarte J.P
dc.contributor.authorTobón C.
dc.date.accessioned2022-09-14T14:33:55Z
dc.date.available2022-09-14T14:33:55Z
dc.date.created2022
dc.identifier.issn17468094
dc.identifier.urihttp://hdl.handle.net/11407/7523
dc.descriptionAblation of stable sources is a promising treatment to reverse the atrial fibrillation (AF) although its underlying mechanisms are still debated. Many attempts have been made to detect stable spiral waves as a target of ablation through univariate processing of intracardiac electrogram signals (EGM). Few researchers have addressed the bivariate assessment in AF, and the existing studies are mainly based on the phase-locking value (PLV). The present work introduces a scheme to assess the AF conduction patterns through the nonlinear interdependence index. Two and three-dimensional computational simulations of cardiac conduction are used to assess the proposed method in characterizing the dynamics of fibrillatory mechanisms such as rotors. In addition, a study with real signals acquired from an AF patient is shown as an example of a possible application in humans. In the simulated episodes, the nonlinear interdependence index characterizes the core of the stable rotors as a region having low interdependence values, surrounded by a high synchronization region. In episodes where multiple reentries coexist, the nonlinear interdependence maps highlight regions harboring the core of stable and transient rotors. Additionally, we found a positive correlation between PLV and nonlinear interdependence index in both real and virtual EGM. The proposed method based on nonlinear synchronization analysis renders relevant information about the fibrillatory dynamics and it is 7.8 times faster than PLV. Hence, the nonlinear interdependence index represents a potential alternative to phase synchronization methods for characterizing AF dynamics. © 2021 Elsevier Ltdeng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85119014977&doi=10.1016%2fj.bspc.2021.103282&partnerID=40&md5=a6fa41fd39c32c2fb00b382e104e69a7
dc.sourceBiomedical Signal Processing and Control
dc.titleNonlinear interdependence of electrograms as a tool to characterize propagation patterns in atrial fibrillation
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.bspc.2021.103282
dc.subject.keywordAtrial fibrillationeng
dc.subject.keywordCardiac signalseng
dc.subject.keywordNonlinear dynamicseng
dc.subject.keywordPhase synchronizationeng
dc.subject.keywordSignal processingeng
dc.subject.keywordAblationeng
dc.subject.keywordDynamicseng
dc.subject.keywordSignal processingeng
dc.subject.keywordSynchronizationeng
dc.subject.keywordAtrial fibrillationeng
dc.subject.keywordCardiac signalseng
dc.subject.keywordElectrogramseng
dc.subject.keywordNonlinear interdependenceseng
dc.subject.keywordPhase synchronizationeng
dc.subject.keywordPhase-Locking valueseng
dc.subject.keywordPropagation patterneng
dc.subject.keywordSignal-processingeng
dc.subject.keywordSpiral waveseng
dc.subject.keywordUnivariateeng
dc.subject.keywordDiseaseseng
dc.relation.citationvolume72
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationOrozco-Duque, A., GI2B, Instituto Tecnológico Metropolitano, Medellín, Colombia, MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.affiliationUgarte, J.P., GIMSC, Universidad de San Buenaventura, Medellín, Colombia
dc.affiliationTobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesCalkins, H., Hindricks, G., Cappato, R., Kim, Y.-H., Saad, E.B., Aguinaga, L., Akar, J.G., Camm, J., 2017 hrs/ehra/ecas/aphrs/solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation (2018) Ep Europace, 20 (1), pp. e1-e160
dc.relation.referencesde Groot, N., van der Does, L., Yaksh, A., Lanters, E., Teuwen, C., Knops, P., van de Woestijne, P., Bogers, A., Direct proof of endo-epicardial asynchrony of the atrial wall during atrial fibrillation in humans (2016) Circulation, 9 (5)
dc.relation.referencesGarrey, W.E., The nature of fibrillary contraction of the heart.-its relation to tissue mass and form 1 (1998) Ann. Noninvasive Electrocardiol., 3 (2), pp. 163-180
dc.relation.referencesJalife, J., Berenfeld, O., Mansour, M., Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation (2002) Cardiovasc. Res., 54 (2), pp. 204-216
dc.relation.referencesNarayan, S.M., Baykaner, T., Clopton, P., Schricker, A., Lalani, G.G., Krummen, D.E., Shivkumar, K., Miller, J.M., Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone: extended follow-up of the confirm trial (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) (2014) J. Am. Coll. Cardiol., 63 (17), pp. 1761-1768
dc.relation.referencesLin, Y.-J., Lo, M.-T., Lin, C., Chang, S.-L., Lo, L.-W., Hu, Y.-F., Hsieh, W.-H., Chung, F.-P., Prevalence, characteristics, mapping, and catheter ablation of potential rotors in nonparoxysmal atrial fibrillation (2013) Circulation, 6 (5), pp. 851-858
dc.relation.referencesMiller, J.M., Kowal, R.C., Swarup, V., Daubert, J.P., Daoud, E.G., Day, J.D., Ellenbogen, K.A., Krummen, D.E., Initial independent outcomes from focal impulse and rotor modulation ablation for atrial fibrillation: multicenter firm registry (2014) J. Cardiovasc. Electrophysiol., 25 (9), pp. 921-929
dc.relation.referencesSteinberg, J.S., Shah, Y., Bhatt, A., Sichrovsky, T., Arshad, A., Hansinger, E., Musat, D., Focal impulse and rotor modulation: acute procedural observations and extended clinical follow-up (2017) Heart Rhythm, 14 (2), pp. 192-197
dc.relation.referencesNarayan, S.M., Krummen, D.E., Rappel, W.-J., Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation (2012) J. Cardiovasc. Electrophysiol., 23 (5), pp. 447-454
dc.relation.referencesBuch, E., Share, M., Tung, R., Benharash, P., Sharma, P., Koneru, J., Mandapati, R., Shivkumar, K., Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: a multicenter experience (2016) Heart Rhythm, 13 (3), pp. 636-641
dc.relation.referencesBenharash, P., Buch, E., Frank, P., Share, M., Tung, R., Shivkumar, K., Mandapati, R., Quantitative analysis of localized sources identified by focal impulse and rotor modulation mapping in atrial fibrillation (2015) Circulation, 8 (3), pp. 554-561
dc.relation.referencesLin, C.-Y., Lin, Y.-J., Narayan, S.M., Baykaner, T., Lo, M.-T., Chung, F.-P., Chen, Y.-Y., Hu, Y.-F., Comparison of phase mapping and electrogram-based driver mapping for catheter ablation in atrial fibrillation (2019) Pacing Clin. Electrophysiol., 42 (2), pp. 216-223
dc.relation.referencesPodziemski, P., Zeemering, S., Kuklik, P., van Hunnik, A., Maesen, B., Maessen, J., Crijns, H.J., Schotten, U., Rotors detected by phase analysis of filtered, epicardial atrial fibrillation electrograms colocalize with regions of conduction block (2018) Circulation, 11 (10)
dc.relation.referencesKuklik, P., Zeemering, S., van Hunnik, A., Maesen, B., Pison, L., Lau, D.H., Maessen, J., Schäffer, B., Identification of rotors during human atrial fibrillation using contact mapping and phase singularity detection: technical considerations (2016) IEEE Trans. Biomed. Eng., 64 (2), pp. 310-318
dc.relation.referencesJacquemet, V., Phase singularity detection through phase map interpolation: Theory, advantages and limitations (2018) Comput. Biol. Med., 102, pp. 381-389
dc.relation.referencesVidmar, D., Narayan, S.M., Rappel, W.-J., Phase synchrony reveals organization in human atrial fibrillation (2015) Am. J. Physiol., 309 (12), pp. H2118-H2126
dc.relation.referencesKuklik, P., Schäffer, B., Hoffmann, B.A., Ganesan, A.N., Schreiber, D., Moser, J.M., Akbulak, R.Ö., Maesen, B., Local electrical dyssynchrony during atrial fibrillation: theoretical considerations and initial catheter ablation results (2016) PloS One, 11 (10)
dc.relation.referencesBakhshayesh, H., Fitzgibbon, S.P., Janani, A.S., Grummett, T.S., Pope, K.J., Detecting synchrony in eeg: A comparative study of functional connectivity measures (2019) Comput. Biol. Med., 105, pp. 1-15
dc.relation.referencesHurtado, J.M., Rubchinsky, L.L., Sigvardt, K.A., Statistical method for detection of phase-locking episodes in neural oscillations (2004) J. Neurophysiol., 91 (4), pp. 1883-1898
dc.relation.referencesLiang, Z., Bai, Y., Ren, Y., Li, X., Synchronization measures in eeg signals (2016), pp. 167-202. , Signal Processing in Neuroscience, Springer
dc.relation.referencesWendling, F., Ansari-Asl, K., Bartolomei, F., Senhadji, L., From eeg signals to brain connectivity: a model-based evaluation of interdependence measures (2009) J. Neurosci. Methods, 183 (1), pp. 9-18
dc.relation.referencesKramer, M.A., Chang, F.-L., Cohen, M.E., Hudson, D., Szeri, A.J., Synchronization measures of the scalp electroencephalogram can discriminate healthy from alzheimer's subjects (2007) Int. J. Neural Syst., 17 (2), pp. 61-69
dc.relation.referencesOrozco-Duque, A., Ugarte, J.P., Tobón, C., Local synchronization indices for rotors detection in atrial fibrillation: A simulation study (2021) Commun. Nonlinear Sci. Numer. Simul., 94
dc.relation.referencesUgarte, J.P., Tobon, C., Lopes, A.M., Machado, J.A.T., A Complex Order Model of Atrial Electrical Propagation from Fractal Porous cell Membrane (2020) Fractals, , S0218348X20501066
dc.relation.referencesUgarte, J.P., Tobón, C., Lopes, A.M., Machado, J., Atrial rotor dynamics under complex fractional order diffusion (2018) Front. Physiol., 9, p. 975
dc.relation.referencesCourtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model (1998) Am. J. Physiol., 275 (1), pp. H301-H321
dc.relation.referencesKneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties (2002) Circ. Res., 90 (9), pp. e73-e87
dc.relation.referencesFenton, F.H., Cherry, E.M., Hastings, H.M., Evans, S.J., Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity, Chaos: An Interdisciplinary (2002) J. Nonlinear Sci., 12 (3), pp. 852-892
dc.relation.referencesTobón, C., Ruiz-Villa, C.A., Heidenreich, E., Romero, L., Hornero, F., Saiz, J., A three-dimensional human atrial model with fiber orientation. electrograms and arrhythmic activation patterns relationship (2013) PloS one, 8 (2)
dc.relation.referencesYang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives (2010) Appl. Math. Model., 34, pp. 200-218
dc.relation.referencesLi, X., Roney, C.H., Handa, B.S., Chowdhury, R.A., Niederer, S.A., Peters, N.S., Ng, F.S., Standardised framework for quantitative analysis of fibrillation dynamics (2019) Scientific Rep., 9 (1), pp. 1-10
dc.relation.referencesRoney, C.H., Cantwell, C.D., Qureshi, N.A., Chowdhury, R.A., Dupont, E., Lim, P.B., Vigmond, E.J., Peters, N.S., Rotor tracking using phase of electrograms recorded during atrial fibrillation (2017) Ann. Biomed. Eng., 45 (4), pp. 910-923
dc.relation.referencesKuklik, P., Zeemering, S., Maesen, B., Maessen, J., Crijns, H.J., Verheule, S., Ganesan, A.N., Schotten, U., Reconstruction of instantaneous phase of unipolar atrial contact electrogram using a concept of sinusoidal recomposition and hilbert transform (2014) IEEE Trans. Biomed. Eng., 62 (1), pp. 296-302
dc.relation.referencesAndrzejak, R.G., Kraskov, A., Stögbauer, H., Mormann, F., Kreuz, T., Bivariate surrogate techniques: necessity, strengths, and caveats (2003) Phys. Rev. E, 68 (6)
dc.relation.referencesAydore, S., Pantazis, D., Leahy, R.M., A note on the phase locking value and its properties (2013) Neuroimage, 74, pp. 231-244
dc.relation.referencesNiso, G., (2013), pp. 405-434. , R. Bru na, E. Pereda, R. Gutiérrez, R. Bajo, F. Maestú, F. del Pozo, Hermes: towards an integrated toolbox to characterize functional and effective brain connectivity, Neuroinformatics 11(4)
dc.relation.referencesOrozco-Duque, A., Tobón, C., Ugarte, J.P., Morillo, C., Bustamante, J., Electroanatomical mapping based on discrimination of electrograms clusters for localization of critical sites in atrial fibrillation (2019) Prog. Biophys. Mol. Biol., 141, pp. 37-46
dc.relation.referencesAlcaraz, R., Rieta, J.J., Application of non-linear methods in the study of atrial fibrillation organization (2013) J. Med. Biol. Eng., 33 (3), pp. 239-252
dc.relation.referencesBarbaro, V., Bartolini, P., Calcagnini, G., Censi, F., Michelucci, A., Measure of synchronisation of right atrial depolarisation wavefronts during atrial fibrillation (2002) Med. Biol. Eng. Comput., 40 (1), pp. 56-62
dc.relation.referencesCensi, F., Barbaro, V., Bartolini, P., Calcagnini, G., Michelucci, A., Cerutti, S., Non-linear coupling of atrial activation processes during atrial fibrillation in humans (2001) Biol. Cybern., 85 (3), pp. 195-201
dc.relation.referencesClayton, R.H., Nash, M.P., Analysis of cardiac fibrillation using phase mapping (2015) Cardiac Electrophysiol. Clin., 7 (1), pp. 49-58
dc.relation.referencesUgarte, J.P., Tobón, C., Saiz, J., Lopes, A.M., Machado, J.A.T., Spontaneous activation under atrial fibrosis: A model using complex order derivatives (2021) Commun. Nonlinear Sci. Numer. Simul., 95
dc.relation.referencesBian, W., Tung, L., Structure-related initiation of reentry by rapid pacing in monolayers of cardiac cells (2006) Circ. Res., 98 (4), pp. e29-e38
dc.relation.referencesKoura, T., Hara, M., Takeuchi, S., Ota, K., Okada, Y., Miyoshi, S., Watanabe, A., Kodama, I., Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping: preferential direction of conduction block changes from longitudinal to transverse with increasing age (2002) Circulation, 105 (17), pp. 2092-2098
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem