Show simple item record

dc.contributor.authorAguilar J
dc.contributor.authorVelásquez L
dc.contributor.authorRomero F
dc.contributor.authorBetancour J
dc.contributor.authorRubio-Clemente A
dc.contributor.authorChica E.
dc.date.accessioned2022-09-14T14:33:56Z
dc.date.available2022-09-14T14:33:56Z
dc.date.created2021
dc.identifier.issn10183639
dc.identifier.urihttp://hdl.handle.net/11407/7525
dc.descriptionIn this work, the efficiency of two horizontal-axis hydrokinetic turbines, whose blades were designed with and without multi-element hydrofoil cross-sections, has been numerical and experimentally investigated for tip speed ratio (λ) values ranging between 2.5 and 9.0 to compare the experimental rotor performance with numerical results. The Eppler 420 hydrofoil was used for the design of the blades applying the blade element momentum (BEM) theory. The variation of the power coefficient curve of the turbines was analyzed by using computational fluid dynamics (CFD) and experimental tests through ANSYs Fluent software with six-degrees of freedom (6-DoF) user-defined function (UDF) method and an open hydraulic channel, respectively. Numerically, for the turbine with a multi-element hydrofoil and without a multi-element (traditional) hydrofoil, maximum power coefficients (CPmax) of 0.5050 and 0.419 (at a λ value equal to 7.129 and 6.739, respectively) were obtained. It is worth noting that a reasonable agreement between the numerical and the experimental results was achieved. In this regard, the blade with a multi-element hydrofoil has a positive influence on the hydrokinetic turbine performance; therefore, it can be used for power generation in river or marine systems. © 2021 The Authorseng
dc.language.isoeng
dc.publisherKing Saud University
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85119284282&doi=10.1016%2fj.jksues.2021.08.002&partnerID=40&md5=17f0957ff902630207ec9947ef9617de
dc.sourceJournal of King Saud University - Engineering Sciences
dc.titleNumerical and experimental study of hydrofoil-flap arrangements for hydrokinetic turbine applications
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1016/j.jksues.2021.08.002
dc.subject.keyword6-DoFeng
dc.subject.keywordHigh-lift hydrofoileng
dc.subject.keywordHorizontal-axis hydrokinetic turbineeng
dc.subject.keywordHydrofoil-flap arrangementeng
dc.subject.keywordMulti-element hydrofoileng
dc.subject.keywordOptimizationeng
dc.subject.keywordComputation theoryeng
dc.subject.keywordComputational fluid dynamicseng
dc.subject.keywordHydraulic motorseng
dc.subject.keywordHydraulic turbineseng
dc.subject.keywordHydrofoilseng
dc.subject.keywordSoftware testingeng
dc.subject.keyword6-DoFeng
dc.subject.keywordHigh liftseng
dc.subject.keywordHigh-lift hydrofoileng
dc.subject.keywordHorizontal axiseng
dc.subject.keywordHorizontal-axis hydrokinetic turbineeng
dc.subject.keywordHydrofoil-flap arrangementeng
dc.subject.keywordHydrokinetic turbineseng
dc.subject.keywordMulti-element hydrofoileng
dc.subject.keywordMultielementseng
dc.subject.keywordOptimisationseng
dc.subject.keywordDegrees of freedom (mechanics)eng
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationAguilar, J., Grupo de Energía Alternativa, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No 52-21, Medellín, 050010, Colombia
dc.affiliationVelásquez, L., Grupo de Energía Alternativa, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No 52-21, Medellín, 050010, Colombia
dc.affiliationRomero, F., Grupo de Energía Alternativa, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No 52-21, Medellín, 050010, Colombia
dc.affiliationBetancour, J., Grupo de Energía Alternativa, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No 52-21, Medellín, 050010, Colombia
dc.affiliationRubio-Clemente, A., Grupo de Energía Alternativa, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No 52-21, Medellín, 050010, Colombia, Facultad de Ingeniería, Tecnológico de Antioquia-Institución Universitaria TdeA, Calle 78b No. 72A-220, Medellín, 050034, Colombia, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050030, Colombia
dc.affiliationChica, E., Grupo de Energía Alternativa, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No 52-21, Medellín, 050010, Colombia
dc.relation.referencesAbutunis, A., Hussein, R., Chandrashekhara, K., A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application (2019) Renewable Energy, 136, pp. 1281-1293
dc.relation.referencesAguilar, J., Rubio-Clemente, A., Velasquez, L., Chica, E., Design and optimization of a multi-element hydrofoil for a horizontal-axis hydrokinetic turbine (2019) Energies, 12, p. 4679
dc.relation.referencesAndreadis, K.M., Schumann, G.J.-P., Pavelsky, T., A simple global river bankfull width and depth database (2013) Water Resources Research, 49, pp. 7164-7168
dc.relation.referencesAtcheson, M., MacKinnon, P., Elsaesser, B., A large scale model experimental study of a tidal turbine in uniform steady flow (2015) Ocean Engineering, 110, pp. 51-61
dc.relation.referencesBahaj, A., Molland, A., Chaplin, J., Batten, W., Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank (2007) Renewable Energy, 32, pp. 407-426
dc.relation.referencesBatten, W., Bahaj, A., Molland, A., Chaplin, J., The prediction of the hydrodynamic performance of marine current turbines (2008) Renewable Energy, 33, pp. 1085-1096
dc.relation.referencesBaykov, A., Dar'enkov, A., Kurkin, A., Sosnina, E., Mathematical modelling of a tidal power station with diesel and wind units (2019) Journal of King Saud University-Science, 31, pp. 1491-1498
dc.relation.referencesBhargava, V., Dwivedi, Y., Rao, P., Analysis of multi-element airfoil configurations: a numerical approach (2017) MOJ Applied Bionics and Biomechanics, 1, pp. 83-88
dc.relation.referencesChen, T., Jiang, X., Wang, H., Li, Q., Li, M., Wu, Z., Investigation of leading-edge slat on aerodynamic performance of wind turbine blade (2020) Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, , 0954406220941883
dc.relation.referencesChica, E., Rubio-Clemente, A., Design of zero head turbines for power generation (2017) IntechOpen
dc.relation.referencesChica, E., Perez, F., Rubio-Clemente, A., Agudelo, S., Design of a hydrokinetic turbine (2015) WIT Transactions on Ecology and the Environment, 195, pp. 137-148
dc.relation.referencesChica, E., Pérez, F., Rubio-Clemente, A., Rotor structural design of a hydrokinetic turbine (2016) International Journal of Applied Engineering Research, 11, pp. 2890-2897
dc.relation.referencesDoman, D.A., Murray, R.E., Pegg, M.J., Gracie, K., Johnstone, C.M., Nevalainen, T., Tow-tank testing of a 1/20th scale horizontal axis tidal turbine with uncertainty analysis (2015) International Journal of Marine Energy, 11, pp. 105-119
dc.relation.referencesFranco, A., Shaker, M., Kalubi, D., Hostettler, S., A review of sustainable energy access and technologies for healthcare facilities in the global south (2017) Sustainable Energy Technologies and Assessments, 22, pp. 92-105
dc.relation.referencesGallego, E., Rubio-Clemente, A., Pineda, J., Velásquez, L., Chica, E., Experimental analysis on the performance of a pico-hydro turgo turbine (2021) Journal of King Saud University-Engineering Sciences, 33, pp. 266-275
dc.relation.referencesGoundar, J.N., Ahmed, M.R., Lee, Y.-H., Numerical and experimental studies on hydrofoils for marine current turbines (2012) Renewable Energy, 42, pp. 173-179
dc.relation.referencesJaume, A.M., Wild, J., Aerodynamic design and optimization of a high-lift device for a wind turbine airfoil (2016), pp. 859-869. , New Results in Numerical and Experimental Fluid Mechanics X, Springer
dc.relation.referencesJeffcoate, P., Whittaker, T., Boake, C., Elsaesser, B., Field tests of multiple 1/10 scale tidal turbines in steady flows (2016) Renewable Energy, 87, pp. 240-252
dc.relation.referencesKang, C., Zhao, H., Zhang, Y., Ding, K., Effects of upstream deflector on flow characteristics and startup performance of a drag-type hydrokinetic rotor (2021) Renewable Energy, 172, pp. 290-303
dc.relation.referencesKe, S., Wen-Quan, W., Yan, Y., Experimental and numerical analysis of a multilayer composite ocean current turbine blade (2020) Ocean Engineering, 198
dc.relation.referencesKe, S., Wen-Quan, W., Yan, Y., The hydrodynamic performance of a tidal-stream turbine in shear flow (2020) Ocean Engineering, 199
dc.relation.referencesKirke, B., Hydrokinetic and ultra-low head turbines in rivers: A reality check (2019) Energy for Sustainable Development, 52, pp. 1-10
dc.relation.referencesManwell, J., McGowan, J., Rogers, A., Aerodynamics of wind turbines (2009) Wind energy explained, pp. 91-155
dc.relation.referencesMao, G., Wang, S., Teng, Q., Zuo, J., Tan, X., Wang, H., Liu, Z., The sustainable future of hydropower: A critical analysis of cooling units via the theory of inventive problem solving and life cycle assessment methods (2017) Journal of Cleaner Production, 142, pp. 2446-2453
dc.relation.referencesMenter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications (1994) AIAA Journal, 32, pp. 1598-1605
dc.relation.referencesMorandi, B., Di Felice, F., Costanzo, M., Romano, G., Dhomé, D., Allo, J., Experimental investigation of the near wake of a horizontal axis tidal current turbine (2016) International Journal of Marine Energy, 14, pp. 229-247
dc.relation.referencesMuheisen, A.H., Yass, M.A., Irthiea, I.K., Enhancement of horizontal wind turbine blade performance using multiple airfoils sections and fences (2021) Journal of King Saud University-Engineering Sciences
dc.relation.referencesMuratoglu, A., Tekin, R., Ertuğrul, Ö.F., Hydrodynamic optimization of high-performance blade sections for stall regulated hydrokinetic turbines using differential evolution algorithm (2021) Ocean Engineering, 220
dc.relation.referencesMycek, P., Gaurier, B., Germain, G., Pinon, G., Rivoalen, E., Experimental study of the turbulence intensity effects on marine current turbines behaviour. part i: One single turbine (2014) Renewable Energy, 66, pp. 729-746
dc.relation.referencesMycek, P., Gaurier, B., Germain, G., Pinon, G., Rivoalen, E., Experimental study of the turbulence intensity effects on marine current turbines behaviour. part ii: Two interacting turbines (2014) Renewable Energy, 68, pp. 876-892
dc.relation.referencesNarsipur, S., Pomeroy, B., Selig, M., Cfd analysis of multielement airfoils for wind turbines (2012) 30th AIAA Applied Aerodynamics Conference, p. 2781
dc.relation.referencesPrakoso, A.P., Siswantara, A.I., Adanta, D., Comparison between 6-dof udf and moving mesh approaches in cfd methods for predicting cross-flow pico-hydro turbine performance (2019) CFD Letters, 11, pp. 86-96
dc.relation.referencesPrakoso, A.P., Adanta, D., Irwansyah, R., Approach for a breastshot waterwheel numerical simulation methodology using six degrees of freedom (2020) Energy Reports, 6, pp. 611-616
dc.relation.referencesRagheb, A., Selig, M., Multi-element airfoil configurations for wind turbines (2011) 29th AIAA Applied Aerodynamics Conference, p. 3971
dc.relation.referencesRagheb, A.M., Selig, M.S., Multielement airfoils for wind turbines (2017) Wind Energy Engineering, pp. 203-219. , Elsevier
dc.relation.referencesRidway, B., Aditya, R., Delly, J., Blade number effect for a horizontal axis river current turbine at a low velocity condition utilizing a parametric study with mathematical model of blade element momentum (2014) Journal of Clean Energy Technologies, 2
dc.relation.referencesSchleicher, W., Riglin, J., Oztekin, A., Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design (2015) Renewable Energy, 76, pp. 234-241
dc.relation.referencesSeo, J., Lee, S.-J., Choi, W.-S., Park, S.T., Rhee, S.H., Experimental study on kinetic energy conversion of horizontal axis tidal stream turbine (2016) Renewable Energy, 97, pp. 784-797
dc.relation.referencesShinomiya, L., Vaz, J., Mesquita, A., de Oliveira, T., Brasil, A., Jr, Silva, P., An approach for the optimum hydrodynamic design of hydrokinetic turbine blades (2015) Revista de Engenharia Térmica, 14, pp. 43-46
dc.relation.referencesSilva, P.A., OLIVEIRA, T.F., (2016), pp. 2441-2456. , A.C. Brasil Junior, J.R. Vaz, Numerical study of wake characteristics in a horizontal-axis hydrokinetic turbine, Anais da Academia Brasileira de Ciências 88
dc.relation.referencesSoulat, L., Pouangue, A.F., Moreau, S., A high-order sensitivity method for multi-element high-lift device optimization (2016) Computers & Fluids, 124, pp. 105-116
dc.relation.referencesSrihari, P., Narayana, P., Rao, K.L., Venkatesh, J.D., Rajesh, P., Influence of slat and flaps arrangement on the performance of modified darrieus wind turbine (2019), 2200, p. 020012. , AIP Publishing LLC AIP Conference Proceedings
dc.relation.referencesSubhra, S., Kolekar, N., Banerjee, A., Mishra, R., Numerical investigation and evaluation of optimum hydrodynamic performance of a horizontal axis hydrokinetic turbine (2011) Journal of Renewable and Sustainable Energy, 3
dc.relation.referencesTian, W., Mao, Z., Ding, H., Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine (2018) International Journal of Naval Architecture and Ocean Engineering, 10, pp. 782-793
dc.relation.referencesTian, W., Mao, Z., Ding, H., Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine (2018) International Journal of Naval Architecture and Ocean Engineering, 10, pp. 782-793
dc.relation.referencesWang, W.-Q., Yin, R., Yan, Y., Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine (2019) Renewable Energy, 133, pp. 91-102
dc.relation.referencesYavuz, T., Koç, E., Kılkış, B., Erol, Ö., Balas, C., Aydemir, T., Performce analysis of the airfoil-slat arrangements for hydro and wind turbine applications (2015) Renewable Energy, 74, pp. 414-421
dc.relation.referencesYildiz, V., Vrugt, J.A., A toolbox for the optimal design of run-of-river hydropower plants (2019) Environmental Modelling & Software, 111, pp. 134-152
dc.relation.referencesYuce, M.I., Muratoglu, A., Hydrokinetic energy conversion systems: A technology status review (2015) Renewable and Sustainable Energy Reviews, 43, pp. 72-82
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record