Mostrar el registro sencillo del ítem

dc.contributor.authorRubio-Clemente A
dc.contributor.authorAguilar J
dc.contributor.authorChica E.
dc.date.accessioned2022-09-14T14:33:57Z
dc.date.available2022-09-14T14:33:57Z
dc.date.created2021
dc.identifier.issn2172038X
dc.identifier.urihttp://hdl.handle.net/11407/7532
dc.descriptionThe hydrodynamic performance and the flow field of two horizontal-axis hydrokinetic turbines with and without a high-lift hydrofoil with a flap were investigated using computational fluid dynamics (CFD) simulation. For improving the accuracy of the numerical simulation, the user-defined function (UDF) of 6-degrees of freedom (6-DoF) was used in the Ansys Fluent software. Unsteady Reynolds-averaged Navier–Stokes (URANS) equations coupled to the SST k − ω turbulence model were employed during the simulation. A three-dimensional model of both of the turbines with three blades was conducted for obtaining the performance curve of the power coefficient (cp) versus the tip speed ratio (TSR). The maximum power coefficients (cpmax ) of the hydrokinetic turbines with and without a high-lift hydrofoil arrangement were 0.5050 and 0.419, respectively. Experimental data from the literature were used for the validation of the numerical results, specifically for the case when a rotor with traditional blades is utilized. In general, the simulation results were in good agreement with the experimental data. © 2021, European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ). All rights reserved.eng
dc.language.isoeng
dc.publisherEuropean Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ)
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85114701766&doi=10.24084%2frepqj19.302&partnerID=40&md5=1de6467f37a31301163522c6ff7d7e3f
dc.sourceRenewable Energy and Power Quality Journal
dc.titlePerformance evaluation of high-lift hydrofoils with a flap used in the design of horizontal-axis hydrokinetic turbines
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.24084/repqj19.302
dc.subject.keyword6-DoFeng
dc.subject.keywordHigh-lift hydrofoileng
dc.subject.keywordHydrofoil-flap arrangementeng
dc.subject.keywordHydrokinetic turbineeng
dc.subject.keywordRichardson extrapolationeng
dc.subject.keywordComputer softwareeng
dc.subject.keywordHydrofoilseng
dc.subject.keywordNavier Stokes equationseng
dc.subject.keywordTurbineseng
dc.subject.keywordTurbulence modelseng
dc.subject.keywordComputational fluid dynamics simulationseng
dc.subject.keywordHydrodynamic performanceeng
dc.subject.keywordHydrokinetic turbineseng
dc.subject.keywordPerformance curveeng
dc.subject.keywordPower coefficientseng
dc.subject.keywordReynolds averagedeng
dc.subject.keywordThree-dimensional modeleng
dc.subject.keywordUser-defined functionseng
dc.subject.keywordComputational fluid dynamicseng
dc.relation.citationvolume19
dc.relation.citationstartpage391
dc.relation.citationendpage395
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationRubio-Clemente, A., Facultad de Ingeniería, Universidad de Medellín, Carrera 87, No. 30-65, Medellín, Colombia, Grupo de Investigación Energía Alternativa, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia
dc.affiliationAguilar, J., Grupo de Investigación Energía Alternativa, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia
dc.affiliationChica, E., Grupo de Investigación Energía Alternativa, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia
dc.relation.referencesMaldar, N. R., Ng, C. Y., Oguz, E., A review of the optimization studies for Savonius turbine considering hydrokinetic applications (2020) Energy Conversion and Management, 226, p. 113495
dc.relation.referencesLust, E. E., Bailin, B. H., Flack, K. A., Performance characteristics of a cross-flow hydrokinetic turbine in current only and current and wave conditions (2021) Ocean Engineering, 219, p. 108362
dc.relation.referencesJohn, B., Varghese, J., Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems (2021) Energy, 221, p. 119717
dc.relation.referencesYuce, M. I., Muratoglu, A., Hydrokinetic energy conversion systems: A technology status review (2015) Renewable and Sustainable Energy Reviews, 43, pp. 72-82
dc.relation.referencesKirke, B., Hydrokinetic turbines for moderate sized rivers (2020) Energy for Sustainable Development, 58, pp. 182-195
dc.relation.referencesNarsipur, A., Pomeroy, B., Selig, M., CFD Analysis of multielement airfoil for wind turbines (2012) 30th AIAA Applied Aerodynamics Conference, p. 2781
dc.relation.referencesYavuza, T., Kilkis, B., Koc, E., Erol, O., Flow and performance characteristics of a double-blade hydrofoil (2012) Advanced Materials Research, 433, pp. 7218-7222
dc.relation.referencesYavuz, T., Koç, E., Performance analysis of double blade airfoil for hydrokinetic turbine applications (2012) Energy conversion and management, 63, pp. 95-100
dc.relation.referencesYavuz, T., Koç, E., Kılkış, B., Erol, Ö., Balas, C., Aydemir, T., Performance analysis of the airfoil-slat arrangements for hydro and wind turbine applications (2015) Renewable energy, 74, pp. 414-421
dc.relation.referencesHashemi, S. M., Moghimi, M., Derakhshan, S., Experimental and numerical study of a flapping-blade vertical-axis hydrokinetic turbine under free surface deformation and blockage effects (2020) International Journal of Environmental Science and Technology, 17 (8), pp. 3633-3650
dc.relation.referencesRagheb, A., Selig, M., Multi-element airfoil configurations for wind turbines (2011) 29th AIAA Applied Aerodynamics Conference, p. 3971
dc.relation.referencesAguilar, J., Rubio-Clemente, A., Velasquez, L., Chica, E., Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine (2019) Energies, 12 (24), p. 4679
dc.relation.referencesJeong, S., Murayama, M., Yamamoto, K., Efficient optimization design method using kriging model (2005) Journal of aircraft, 42 (2), pp. 413-420
dc.relation.referencesManwell, J. F., McGowan, J.G., Rogers, A.L., Aerodynamics of Wind Turbines (2009) Wind energy explained: theory, design and application, pp. 91-155. , J. F Manwell, JG McGowan and AL Rogers (eds) 2th ed. UK: John Wiley & Sons cap. 3
dc.relation.referencesMenter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications (1994) AIAA journal, 32 (8), pp. 1598-1605
dc.relation.referencesPrakoso, A. P., Adanta, D., Irwansyah, R., Approach for a breastshot waterwheel numerical simulation methodology using six degrees of freedom (2020) Energy Reports, 6, pp. 611-616
dc.relation.referencesPrakoso, A. P., Siswantara, A. I., Adanta, D., Comparison between 6-DOF UDF and moving mesh approaches in CFD methods for predicting cross-flow pico-hydro turbine performance (2019) CFD Letters, 11 (6), pp. 86-96
dc.relation.referencesRoache, P. J., Perspective: a method for uniform reporting of grid refinement studies (1994) Journal of Fluids Engineering, 116, pp. 405-413
dc.relation.referencesTian, W., Mao, Z., Ding, H., Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine (2018) International Journal of Naval Architecture and Ocean Engineering, 10 (6), pp. 782-793
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem