Mostrar el registro sencillo del ítem

dc.contributor.authorPerez S
dc.contributor.authorMuñoz-Sadaña J
dc.contributor.authorAcelas N
dc.contributor.authorFĺorez E.
dc.date.accessioned2022-09-14T14:33:57Z
dc.date.available2022-09-14T14:33:57Z
dc.date.created2021
dc.identifier.issn22133437
dc.identifier.urihttp://hdl.handle.net/11407/7534
dc.descriptionPhosphate removal from wastewater and the correspondent sustainable technologies are urgent issues to solve since phosphorous causes eutrophication of water sources. The effect of heat treatment on the mixture eggshell (ES), rich in calcium carbonate, with fiber palm (F), rich in carbonaceous material for phosphate removal is here reported focusing on the effects of temperature and F/ES ratio. The gases obtained from the F pyrolysis process help to improve the Ca(OH)2 formation. In samples with a ES/F ratio of 1/10 (ESF-1:10) the CaCO3 is mainly transformed into Ca(OH)2 (83 %) at 600 °C instead of 800 °C. The obtained solids were employed for phosphate removal from aqueous solutions and characterized before and after P removal. The ESF-1:10 sample pyrolyzed at 600 °C exhibited the best adsorption performance (48.3 %) at 2 h while ES showed 6.5 % at the same experimental conditions. The pseudo-second-order model kinetic and Langmuir model isotherm provided better-fitting models for the adsorption behavior of P. The adsorption capacity using Langmuir model was 72.0 mg g-1, and the pseudo-second-order kinetic model assumes that the removal process of adsorbate is controlled by chemical adsorption. These results show that the Ca(OH)2 is responsible for the phosphate removal by ligand exchange followed by precipitation mechanism leading to the formation of apatite. © 2020 Elsevier Ltd.eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097506863&doi=10.1016%2fj.jece.2020.104684&partnerID=40&md5=3b08f3c49b17b8c85076923ea4d2d9ee
dc.sourceJournal of Environmental Chemical Engineering
dc.titlePhosphate removal from aqueous solutions by heat treatment of eggshell and palm fiber
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.jece.2020.104684
dc.subject.keywordAdsorbenteng
dc.subject.keywordBiomasseng
dc.subject.keywordCalcium carbonateeng
dc.subject.keywordCalcium hydroxide phosphateeng
dc.subject.keywordEggshelleng
dc.subject.keywordWatereng
dc.subject.keywordCalciteeng
dc.subject.keywordCalcium carbonateeng
dc.subject.keywordEutrophicationeng
dc.subject.keywordHeat treatmenteng
dc.subject.keywordHydrated limeeng
dc.subject.keywordPhosphate mineralseng
dc.subject.keywordAdsorption performanceeng
dc.subject.keywordEffect of heat treatmentseng
dc.subject.keywordEffects of temperatureeng
dc.subject.keywordExperimental conditionseng
dc.subject.keywordPrecipitation mechanismeng
dc.subject.keywordPseudo-second order modeleng
dc.subject.keywordPseudo-second-order kinetic modelseng
dc.subject.keywordSustainable technologyeng
dc.subject.keywordAdsorptioneng
dc.relation.citationvolume9
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationPerez, S., Grupo de Investigación Materiales con Impacto (MAT and MPAC), Universidad de Medellín, Medellín 050026, Colombia
dc.affiliationMuñoz-Sadaña, J., Centro de Investigación y de Estudios Avanzados del IPN, Lib. Norponiente No.2000, Fracc. Real de Juriquilla, 76230, Querétaro, Qro, Mexico
dc.affiliationAcelas, N., Grupo de Investigación Materiales con Impacto (MAT and MPAC), Universidad de Medellín, Medellín 050026, Colombia
dc.affiliationFĺorez, E., Grupo de Investigación Materiales con Impacto (MAT and MPAC), Universidad de Medellín, Medellín 050026, Colombia
dc.relation.referencesD. Cordell, J.O. Drangert, S. White, The story of phosphorus: global food security and food for thought, Glob. Environ. Change 19 (2009) 292–305, https://doi.org/10.1016/j.gloenvcha.2008.10.009.
dc.relation.referencesX. Liu, L. Zhang, Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies, Powder Technol. 277 (2015) 112–119, https://doi.org/10.1016/j.powtec.2015.02.055.
dc.relation.referencesD.A. Vaccari, S.M. Powers, X. Liu, Demand-driven model for global phosphate rock suggests paths for phosphorus sustainability, Environ. Sci. Technol. 53 (2019) 10417–10425, https://doi.org/10.1021/acs.est.9b02464.
dc.relation.referencesJ. Cooper, R. Lombardi, D. Boardman, C. Carliell-Marquet, The future distribution and production of global phosphate rock reserves, Resour. Conserv. Recycl. 57 (2011) 78–86, https://doi.org/10.1016/j.resconrec.2011.09.009.
dc.relation.referencesJ. Mbabazi, T. Inoue, K. Yokota, M. Saga, Phosphorus bioavailability in rivers flowing through contrasting land uses, J. Environ. Chem. Eng. 7 (2019) 102960, https://doi.org/10.1016/j.jece.2019.102960.
dc.relation.referencesK.A. Karimaian, A. Amrane, H. Kazemian, R. Panahi, M. Zarrabi, Retention of phosphorous ions on natural and engineered waste pumice: characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study, Appl. Surf. Sci. 284 (2013) 419–431, https://doi.org/10.1016/j.apsusc.2013.07.114.
dc.relation.referencesS. Wan, S. Wang, Y. Li, B. Gao, Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions, J. Ind.Eng. Chem. 47 (2017) 246–253, https://doi.org/10.1016/j.jiec.2016.11.039.
dc.relation.referencesH. Zhang, C. Chen, E.M. Gray, S.E. Boyd, H. Yang, D. Zhang, Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus, Geoderma 276 (2016) 1–6, https://doi.org/10.1016/j.geoderma.2016.04.020.
dc.relation.referencesK. Vikrant, K.H. Kim, Y.S. Ok, D.C.W. Tsang, Y.F. Tsang, B.S. Giri, R.S. Singh, Engineered/designer biochar for the removal of phosphate in water and wastewater, Sci. Total Environ. 616–617 (2018) 1242–1260, https://doi.org/10.1016/j.scitotenv.2017.10.193.
dc.relation.referencesE. Zong, X. Liu, J. Jiang, S. Fu, F. Chu, Preparation and characterization of zirconialoaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution, Appl. Surf. Sci. 387 (2016) 419–430, https://doi.org/10.1016/j.apsusc.2016.06.107.
dc.relation.referencesJ. Lehmann, S. Joseph, Biochar for Environmental Management, 2009 https://doi.org/9781844076581.
dc.relation.referencesZ. Ajmal, A. Muhmood, R. Dong, S. Wu, Probing the efficiency of magnetically modified biomass-derived biochar for effective phosphate removal, J. Environ. Manage. 253 (2020) 109730, https://doi.org/10.1016/j.jenvman.2019.109730.
dc.relation.referencesD. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent- a critical review, Bioresour. Technol. 160 (2014) 191–202, https://doi.org/10.1016/j.biortech.2014.01.120.
dc.relation.referencesE. Antunes, M.V. Jacob, G. Brodie, P.A. Schneider, Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis, J. Environ. Manage. 203 (2017) 264–272, https://doi.org/10.1016/j.jenvman.2017.07.071.
dc.relation.referencesH. Qiao, L. Mei, G. Chen, H. Liu, C. Peng, F. Ke, R. Hou, X. Wan, H. Cai, Adsorption of nitrate and phosphate from aqueous solution using amine cross-linked tea wastes, Appl. Surf. Sci. 483 (2019) 114–122, https://doi.org/10.1016/j.apsusc.2019.03.147.
dc.relation.referencesX. Liu, F. Shen, X. Qi, Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw, Sci. Total Environ. 666 (2019) 694–702, https://doi.org/10.1016/j.scitotenv.2019.02.227.
dc.relation.referencesC.A. Takaya, L.A. Fletcher, S. Singh, U.C. Okwuosa, A.B. Ross, Recovery of phosphate with chemically modified biochars, J. Environ. Chem. Eng. 4 (2016) 1156–1165, https://doi.org/10.1016/j.jece.2016.01.011.
dc.relation.referencesS.B. Liu, X.F. Tan, Y.G. Liu, Y.L. Gu, G.M. Zeng, X.J. Hu, H. Wang, L. Zhou, L. H. Jiang, B. Bin Zhao, Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential, RSC Adv. 6 (2016) 5871–5880, https://doi.org/10.1039/c5ra22142k.
dc.relation.referencesS. Dunets, C.© Guelph, Y. Zheng, M. Dixon, Use of Calcium-based Materials for Phosphorus Removal From Greenhouse Wastewater, 2014. https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/8439/Dunets_Siobhan_201409_MSc.pdf?sequence=3.
dc.relation.referencesX. Li, Y. Xie, F. Jiang, B. Wang, Q. Hu, Y. Tang, T. Luo, T. Wu, Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: behaviors and mechanisms, Sci. Total Environ. 709 (2020) 136123, https://doi.org/10.1016/j.scitotenv.2019.136123.
dc.relation.referencesL. Kong, M. Han, K. Shih, M. Su, Z. Diao, J. Long, D. Chen, L. Hou, Y. Peng, Nanorod Ca-decorated sludge derived carbon for removal of phosphorus, Environ. Pollut. 233 (2018) 698–705, https://doi.org/10.1016/j.envpol.2017.10.099.
dc.relation.referencesS. Wang, L. Kong, J. Long, M. Su, Z. Diao, X. Chang, D. Chen, G. Song, K. Shih, Adsorption of phosphorus by calcium-flour biochar: isotherm, kinetic and transformation studies, Chemosphere 195 (2018) 666–672, https://doi.org/10.1016/j.chemosphere.2017.12.101.
dc.relation.referencesJ. Chen, S. Tang, F. Yan, Z. Zhang, Efficient recovery of phosphorus in sewage sludge through hydroxylapatite enhancement formation aided by calcium-based additives, Water Res. 171 (2020) 115450, https://doi.org/10.1016/j.watres.2019.115450.
dc.relation.referencesA. Mittal, M. Teotia, R.K. Soni, J. Mittal, Applications of egg shell and egg Shell membrane as adsorbents: a review, J. Mol. Liq. 223 (2016) 376–387, https://doi.org/10.1016/j.molliq.2016.08.065.
dc.relation.referencesC. Yirong, L.P. Vaurs, Wasted salted duck eggshells as an alternative adsorbent for phosphorus removal, J. Environ. Chem. Eng. 7 (2019) 103443, https://doi.org/10.1016/j.jece.2019.103443.
dc.relation.referencesA.B. Rodríguez-Navarro, P. Marie, Y. Nys, M.T. Hincke, J. Gautron, Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification, J. Struct. Biol. 190 (2015) 291–303, https://doi.org/10.1016/j.jsb.2015.04.014.
dc.relation.referencesS. Espín, S. Ruiz, P. S´anchez-Virosta, J.P. Salminen, T. Eeva, Effects of experimental calcium availability and anthropogenic metal pollution on eggshell characteristics and yolk carotenoid and vitamin levels in two passerine birds, Chemosphere 151 (2016) 189–201, https://doi.org/10.1016/j.chemosphere.2016.02.074.
dc.relation.referencesC.M.M. Cordeiro, M.T. Hincke, Recent patents on eggshell: shell and membrane applications, Recent Patents Food, Nutr. Agric. 3 (2012) 1–8, https://doi.org/10.2174/2212798411103010001.
dc.relation.referencesF. Hamideh, A. Akbar, Application of eggshell wastes as valuable and utilizable products: a review, Prog. Agric. Eng. Sci. 64 (2018) 104–114, https://doi.org/10.17221/6/2017-rae.
dc.relation.referencesE. Panagiotou, N. Kafa, L. Koutsokeras, P. Kouis, P. Nikolaou, G. Constantinides, I. Vyrides, Turning calcined waste egg shells and wastewater to Brushite: phosphorus adsorption from aqua media and anaerobic sludge leach water, J. Clean. Prod. 178 (2018) 419–428, https://doi.org/10.1016/j.jclepro.2018.01.014.
dc.relation.referencesT.E. K¨ose, B. Kivanç, Adsorption of phosphate from aqueous solutions using calcined waste eggshell, Chem. Eng. J. 178 (2011) 34–39, https://doi.org/10.1016/j.cej.2011.09.129.
dc.relation.referencesA.F. Santos, A.L. Arim, D.V. Lopes, L.M. Gando-Ferreira, M.J. Quina, Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent, J. Environ. Manage. 238 (2019) 451–459, https://doi.org/10.1016/j.jenvman.2019.03.015.
dc.relation.referencesE. Antunes, M.V. Jacob, G. Brodie, P.A. Schneider, Isotherms, kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis, J. Environ. Chem. Eng. 6 (2018) 395–403, https://doi.org/10.1016/j.jece.2017.12.011.
dc.relation.referencesB. Wu, J. Wan, Y. Zhang, B. Pan, I.M.C. Lo, Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms, Environ. Sci. Technol. 54 (2020) 50–66, https://doi.org/10.1021/acs.est.9b05569.
dc.relation.referencesT. Kan, V. Strezov, T.J. Evans, Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters, Renewable Sustainable Energy Rev. 57 (2016) 1126–1140, https://doi.org/10.1016/j.rser.2015.12.185.
dc.relation.referencesE.N. Bakatula, D. Richard, C.M. Neculita, G.J. Zagury, Determination of point of zero charge of natural organic materials, Environ. Sci. Pollut. Res. 25 (2018) 7823–7833, https://doi.org/10.1007/s11356-017-1115-7.
dc.relation.referencesM.A. Anderson, A.J. Rubin, Adsorption of inorganics at solid-liquid interfaces, Soil Sci. 133 (1982) 257–258, https://doi.org/10.1097/00010694-198204000-00010.
dc.relation.referencesW.F. Tan, S.J. Lu, F. Liu, X.H. Feng, J.Z. He, L.K. Koopal, Determination of the point-of-zero charge of manganese oxides with different methods including an improved salt titration method, Soil Sci. 173 (2008) 277–286, https://doi.org/10.1097/SS.0b013e31816d1f12.
dc.relation.referencesT. Mahmood, M.T. Saddique, A. Naeem, P. Westerhoff, S. Mustafa, A. Alum, Comparison of different methods for the point of zero charge determination of NiO, Ind. Eng. Chem. Res. 50 (2011) 10017–10023, https://doi.org/10.1021/ie200271d.
dc.relation.referencesO.B. Ayodele, K.C. Lethesh, Z. Gholami, Y. Uemura, Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: kinetics and Arrhenius parameters, J. Energy Chem. 25 (2016) 158–168, https://doi.org/10.1016/j.jechem.2015.08.017.
dc.relation.referencesH. Sitepu, B.H. O’Connor, D. Li, Comparative evaluation of the March and generalized spherical harmonic preferred orientation models using X-ray diffraction data for molybdite and calcite powders, J. Appl. Crystallogr. 38 (2005) 158–167, https://doi.org/10.1107/S0021889804031231.
dc.relation.referencesS.A. Salaudeen, S.M. Al-Salem, M. Heidari, B. Acharya, A. Dutta, Eggshell as a carbon dioxide sorbent: kinetics of the calcination and carbonation reactions, Energy Fuels 33 (2019) 4474–4486, https://doi.org/10.1021/acs.energyfuels.9b00072.
dc.relation.referencesT. Roychowdhury, S. Bahr, P. Dietrich, M. Meyer, A. Thißen, M.R. Linford, Calcite (CaCO3), by near-ambient pressure XPS, Surf. Sci. Spectra 26 (2019) 014025, https://doi.org/10.1116/1.5109266.
dc.relation.referencesG.S. dos Reis, P.S. Thue, B.G. Cazacliu, E.C. Lima, C.H. Sampaio, M. Quattrone, E. Ovsyannikova, A. Kruse, G.L. Dotto, Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer, J. Clean. Prod. 256 (2020) 120416, https://doi.org/10.1016/j.jclepro.2020.120416.
dc.relation.referencesM. Horta, M. Aguilar, F. Moura, J. Campos, V. Ramos, A. Quizunda, Synthesis and characterization of green nanohydroxyapatite from hen eggshell by precipitation method, Mater. Today Proc. 14 (2019) 716–721, https://doi.org/10.1016/j.matpr.2019.02.011.
dc.relation.referencesN. Tsubouchi, C. Xu, Y. Ohtsuka, Carbon crystallization during high-temperature pyrolysis of coals and the enhancement by calcium, Energy Fuels 17 (2003) 1119–1125, https://doi.org/10.1021/ef020265u.
dc.relation.referencesN. Jeong, S.C. Park, M.S. Jang, S.I. Kim, Direct growth of graphitic carbonencapsulating carbonate apatite nanowires from calcium carbonate, Cryst. Growth Des. 18 (2018) 4920–4928, https://doi.org/10.1021/acs.cgd.8b00107.
dc.relation.referencesL. Berzina-Cimdina, N. Borodajenko, Research of calcium phosphates using Fourier transform infrared spectroscopy, Infrared Spectrosc. - Mater. Sci. Eng. Technol., InTech (2012), https://doi.org/10.5772/36942.
dc.relation.referencesA. Monballiu, K. Ghyselbrecht, L. Pinoy, B. Meesschaert, Phosphorus reclamation by end-of-pipe recovery as calcium phosphate from effluent of wastewater treatment plants of agroindustry, J. Environ. Chem. Eng. 8 (2020) 104280, https://doi.org/10.1016/j.jece.2020.104280.
dc.relation.referencesC.C. Chusuei, D.W. Goodman, Brushite (CaHPO 4 ⋅ 2H 2 O) by XPS, Surf. Sci.Spectra 8 (2001) 39–44, https://doi.org/10.1116/11.20010501.
dc.relation.referencesG.N. Raikar, J.L. Ong, L.C. Lucas, Hydroxyapatite characterized by XPS, Surf. Sci. Spectra 4 (1996) 9–13, https://doi.org/10.1116/1.1247808.
dc.relation.referencesD. Chen, P. Szostak, Z. Wei, R. Xiao, Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate, Sci. Total Environ. 539 (2016) 381–387, https://doi.org/10.1016/j.scitotenv.2015.09.028.
dc.relation.referencesI. Blanco, P. Molle, L.E. S´aenz de Miera, G. Ansola, Basic oxygen furnace steel slag aggregates for phosphorus treatment: evaluation of its potential use as a substrate in constructed wetlands, Water Res. 89 (2016) 355–365, https://doi.org/10.1016/j.watres.2015.11.064.
dc.relation.referencesH. Yin, X. Yan, X. Gu, Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands, Water Res. 115 (2017) 329–338, https://doi.org/10.1016/j.watres.2017.03.014.
dc.relation.referencesH. Yin, Y. Yun, Y. Zhang, C. Fan, Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite, J. Hazard. Mater. 198 (2011) 362–369, https://doi.org/10.1016/j.jhazmat.2011.10.072.
dc.relation.referencesG.S. Dos Reis, B. Grigore Cazacliu, C. Rodriguez Correa, E. Ovsyannikova, A. Kruse, C. Hoffmann Sampaio, E.C. Lima, G.L. Dotto, Adsorption and recovery of phosphate from aqueous solution by the construction and demolition wastes sludge and its potential use as phosphate-based fertiliser, J. Environ. Chem. Eng. 8 (2020) 103605, https://doi.org/10.1016/j.jece.2019.103605.
dc.relation.referencesA.R. Prazeres, F. Fernandes, S. Luz, E. Jer´onimo, Simple processes for contamination removal in cheesemaking wastewater: CaCO3, Mg(OH)2, FeSO4 and FeCl3, J. Environ. Chem. Eng. 8 (2020), https://doi.org/10.1016/j.jece.2020.104034.
dc.relation.referencesJ. Lalley, C. Han, X. Li, D.D. Dionysiou, M.N. Nadagouda, Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests, Chem. Eng. J. 284 (2016) 1386–1396, https://doi.org/10.1016/j.cej.2015.08.114.
dc.relation.referencesR. Liu, L. Chi, X. Wang, Y. Sui, Y. Wang, H. Arandiyan, Review of metal (hydr)oxide and other adsorptive materials for phosphate removal from water, J. Environ. Chem. Eng. 6 (2018) 5269–5286, https://doi.org/10.1016/j.jece.2018.08.008.
dc.relation.referencesY. Zhang, H. Li, Y. Zhang, F. Song, X. Cao, X. Lyu, J. Crittenden, Statistical optimization and batch studies on adsorption of phosphate using Al-eggshell, Adsorp. Sci. Technol. 36 (2018) 999–1017, https://doi.org/10.1177/0263617417740790.
dc.relation.referencesY.K. Choi, H.M. Jang, E. Kan, A.R. Wallace, W. Sun, Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar, Environ. Eng. Res. 24 (2019) 434–442, https://doi.org/10.4491/EER.2018.296.
dc.relation.referencesJ. Li, B. Li, H. Huang, X. Lv, N. Zhao, G. Guo, D. Zhang, Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge, Sci. Total Environ. 687 (2019) 460–469, https://doi.org/10.1016/j.scitotenv.2019.05.400.
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem