Mostrar el registro sencillo del ítem

dc.contributor.authorZapata D
dc.contributor.authorArroyave C
dc.contributor.authorCardona L
dc.contributor.authorAristizábal A
dc.contributor.authorPoschenrieder C
dc.contributor.authorLlugany M.
dc.date.accessioned2022-09-14T14:33:57Z
dc.date.available2022-09-14T14:33:57Z
dc.date.created2021
dc.identifier.issn22119264
dc.identifier.urihttp://hdl.handle.net/11407/7537
dc.descriptionMicroalgae cultivation in dairy wastewaters is of major interest for nutrient removal and sustainable microalgal biomass production. This biomass is a profitable raw material to produce biofertilizers and biocompounds for use in agriculture and food and pharmaceutical industries. This study aimed to compare biomass production, morphology, and phytohormone levels in Spirulina platensis (UTEX LB1926) grown on dairy wastewaters, in comparison to Zarrouk medium. An extraction method from lyophilized biomass was developed to detect and quantify the endogenous phytohormones Indole-3-acetic acid (IAA), Phenylacetic acid (PAA), Salicylic acid (SA), Jasmonic acid (JA), Abscisic acid (ABA), Gibberellin A1 (GA1), Gibberellin A4 (GA4), Indole-3-butyric acid (IBA), 1-Aminocyclopropane-1-carboxylic acid (ACC), 6-Benzylaminopurine (BAP), and Kinetin (KA) in S. platensis, cultivated in dairy wastewater and cheese whey, from a local dairy industry. Phytohormones were generally higher in S. platensis cultivated in dairy wastewaters than in a synthetic medium. The concentrations of phytohormones widely varied with the culture medium and the lighting conditions. Low light intensity significantly promoted the filaments of S. platensis to grow longer and thicker in wastewater, especially in cheese whey, enhancing biomass harvest. The cultivation of S. platensis in dairy wastewaters allows the production of both biomass and phytohormones, at low cost, while treating these waters. © 2021 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85113316053&doi=10.1016%2fj.algal.2021.102469&partnerID=40&md5=040ccb7865bd89bf302cb890799987d8
dc.sourceAlgal Research
dc.titlePhytohormone production and morphology of Spirulina platensis grown in dairy wastewaters
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1016/j.algal.2021.102469
dc.subject.keywordCyanobacteriaeng
dc.subject.keywordMicroalgae biofertilizerseng
dc.subject.keywordMicroalgal bioproductseng
dc.subject.keywordProcess circularityeng
dc.subject.keywordWastewater treatmenteng
dc.relation.citationvolume59
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationZapata, D., Department of Environmental Engineering, Universidad de Medellín, Carrera 87 # 30-65, Medellín, 050026, Colombia
dc.affiliationArroyave, C., Department of Environmental Engineering, Universidad de Medellín, Carrera 87 # 30-65, Medellín, 050026, Colombia
dc.affiliationCardona, L., Department of Mechanics, Institución Universitaria Pascual Bravo, Calle 73 # 73A – 226, Medellín, 050034, Colombia, Department of Process Engineering, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín, 050022, Colombia
dc.affiliationAristizábal, A., Department of Process Engineering, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín, 050022, Colombia
dc.affiliationPoschenrieder, C., Plant Physiology Laboratory, Facultat de Biociències, Universitat Autonòma de Barcelona, Calle de la Vall Moronta, s.n., Bellaterra, Barcelona 08193, Spain
dc.affiliationLlugany, M., Plant Physiology Laboratory, Facultat de Biociències, Universitat Autonòma de Barcelona, Calle de la Vall Moronta, s.n., Bellaterra, Barcelona 08193, Spain
dc.relation.referencesGonçalves, A.L., Pires, J.C.M., Simões, M., A review on the use of microalgal consortia for wastewater treatment (2017) Algal Res., 24, pp. 403-415
dc.relation.referencesChojnacka, K., Noworyta, A., Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures (2004) Enzym. Microb. Technol., 34 (2), pp. 461-465
dc.relation.referencesZhou, W., Li, Y., Gao, Y., Zhao, H., Nutrients removal and recovery from saline wastewater by Spirulina platensis (2017) Bioresour. Technol., 245, pp. 10-17. , August
dc.relation.referencesGórka, B., Wieczorek, P.P., Simultaneous determination of nine phytohormones in seaweed and algae extracts by HPLC-PDA (2017) J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1057, pp. 32-39. , October 2016
dc.relation.referencesToribio, A.J., Suárez-Estrella, F., Jurado, M.M., López, M.J., López-González, J.A., Moreno, J., Prospection of cyanobacteria producing bioactive substances and their application as potential phytostimulating agents (2020) Biotechnology Reports, 26
dc.relation.referencesCheng, J., Guo, W., Ameer Ali, K., Ye, Q., Jin, G., Qiao, Z., Promoting helix pitch and trichome length to improve biomass harvesting efficiency and carbon dioxide fixation rate by Spirulina sp. in 660 m2 raceway ponds under purified carbon dioxide from a coal chemical flue gas (2018) Bioresour. Technol., 261, pp. 76-85. , April
dc.relation.referencesWu, D., Wang, S., Liu, K., Yu, X., He, Y., Wang, Z., Rapid measurement of morphological features of Spirulina microalgae filaments using microscopy and image processing algorithms (2012), 2, pp. 3-9
dc.relation.referencesGao, K., Ma, Z., Photosynthesis and growth of Arthrospira (Spirulina) platensis (Cyanophyta) in response to solar UV radiation, with special reference to its minor variant (2008) Environ. Exp. Bot., 63, pp. 123-129
dc.relation.referencesFan, H., Wang, K., Wang, C., Yu, F., He, X., Ma, J., Li, X., A comparative study on growth characters and nutrients removal from wastewater by two microalgae under optimized light regimes (2020) Environ. Technol. Innov., 19 (5)
dc.relation.referencesPierobon, S.C., Cheng, X., Graham, P.J., Nguyen, B., Karakolis, E.G., Sinton, D., Emerging microalgae technology: a review (2018) Sustainable Energy & Fuels, 2 (1), pp. 13-38
dc.relation.referencesZhai, J., Li, X., Li, W., Rahaman, M.H., Zhao, Y., Wei, B., Wei, H., Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater (2017) Ecol. Eng., 108, pp. 83-92
dc.relation.referencesNiangoran, N.U.F., Buso, D., Zissis, G., Prudhomme, T., Influence of light intensity and photoperiod on energy efficiency of biomass and pigment production of Spirulina (Arthrospira platensis) (2021) OCL, 28, p. 37
dc.relation.referencesVonshak, A., (1997), Spirulina Platensis Arthrospira. In Avigad Vonshak (Ed.), Taiylor & Francis Group (1st Edició). doi:
dc.relation.referencesHan, P., Lu, Q., Zhong, H., Xie, J., Leng, L., Li, J., Zhou, W., Recycling nutrients from soy sauce wastewater to culture value-added Spirulina maxima (2021) Algal Res., 53, p. 102157. , September 2020
dc.relation.referencesAhmed, M., Stal, L.J., Hasnain, S., Production of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9 (2010) J. Microbiol. Biotechnol., 20 (9), pp. 1259-1265
dc.relation.referencesBayona-Morcillo, P.J., Plaza, B.M., Gómez-Serrano, C., Rojas, E., Jiménez-Becker, S., Effect of the foliar application of cyanobacterial hydrolysate (Arthrospira platensis) on the growth of Petunia x hybrida under salinity conditions (2020) J. Appl. Phycol., 32 (6), pp. 4003-4011
dc.relation.referencesChittora, D., Meena, M., Barupal, T., Swapnil, P., Cyanobacteria as a source of biofertilizers for sustainable agriculture (2020) Biochemistry and Biophysics Reports, 22, p. 100737. , January
dc.relation.referencesLu, Y., Xu, J., Phytohormones in microalgae: a new opportunity for microalgal biotechnology? (2015) Trends Plant Sci., 20 (5), pp. 273-282
dc.relation.referencesRomanenko, K.O., Kosakovskaya, I.V., Romanenko, P.O., Phytohormones of microalgae: biological role and involvement in the regulation of physiological processes (2016) International Journal on Algae, 18 (2), pp. 179-201
dc.relation.referencesYu, Z., Song, M., Pei, H., Jiang, L., Hou, Q., Nie, C., Zhang, L., The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae (2017) Bioresour. Technol., 239, pp. 87-96
dc.relation.referencesSu, Y., Xia, S., Wang, R., Xiao, L., Phytohormonal quantification based on biological principles (2017) Hormone Metabolism and Signaling in Plants
dc.relation.referencesAlsenani, F., Wass, T.J., Ma, R., Eltanahy, E., Netzel, M.E., Schenk, P.M., Transcriptome-wide analysis of Chlorella reveals auxin-induced carotenogenesis pathway in green microalgae (2019) Algal Res., 37, pp. 320-335. , December 2018
dc.relation.referencesStirk, W.A., Rengasamy, K.R.R., Kulkarni, M.G., Staden, J., Plant biostimulants from seaweed (2020) The Chemical Biology of Plant Biostimulants, pp. 31-55
dc.relation.referencesYu, Z., Pei, H., Jiang, L., Hou, Q., Nie, C., Zhang, L., Phytohormone addition coupled with nitrogen depletion almost tripled the lipid productivities in two algae (2018) Bioresour. Technol., 247 (17923), pp. 904-914
dc.relation.referencesHan, X., Zeng, H., Bartocci, P., Fantozzi, F., Yan, Y., Phytohormones and effects on growth and metabolites of microalgae: a review (2018) Fermentation, 4 (2), pp. 1-15
dc.relation.referencesPark, W.K., Yoo, G., Moon, M., Kim, C.W., Choi, Y.E., Yang, J.W., Phytohormone supplementation significantly increases growth of chlamydomonas reinhardtii cultivated for biodiesel production (2013) Appl. Biochem. Biotechnol., 171 (5), pp. 1128-1142
dc.relation.referencesAhmed, M., Stal, L.J., Hasnain, S., Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria (2014) J. Microbiol. Biotechnol., 24 (8), pp. 1015-1025
dc.relation.referencesKolev, S., General characteristics and treatment possibilities of dairy wastewater – a review (2017) Food Technol. Biotechnol., 53 (2), pp. 237-242
dc.relation.referencesMadkour, F.F., Kamil, A.E.-W., Nasr, H.S., Production and nutritive value of Spirulina platensis in reduced cost media (2012) The Egyptian Journal of Aquatic Research, 38 (1), pp. 51-57
dc.relation.referencesVonshak, A., Abeliovich, A., Boussiba, S., Arad, S., Richmond, A., Factors and Population Density (1982), 2, pp. 175-185
dc.relation.referencesAPHA, Standard Methods for the Examination of Water and Wastewater, 21st ed. (2005), American Public Health Association Washington, D.C
dc.relation.referencesMoheimani, N.R., Borowitzka, M.A., Isdepsky, A., Sing, S.F., Standard methods for measuring growth of algae and their composition (2012) Algae for Biofuels and Energy, pp. 265-284
dc.relation.referencesLlugany, M., Martin, S.R., Barceló, J., Poschenrieder, C., Endogenous jasmonic and salicylic acids levels in the cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress (2013) Plant Cell Rep., 32 (8), pp. 1243-1249
dc.relation.referencesMüller, M., Munné-Bosch, S., Pan, X., Welti, R., Wang, X., Dun, E., Onckelen, H.V., Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry (2011) Plant Methods, 7 (1), p. 37
dc.relation.referencesHeinrich, J.M., Niizawa, I., Botta, F.A., Trombert, A.R., Irazoqui, H.A., Stratification of the radiation field inside a Photobioreactor during microalgae growth (2013) Photochem. Photobiol., 89 (5), pp. 1127-1134
dc.relation.referencesSili, C., Torzillo, G., Vonshak, A., Arthrospira (Spirulina) (2012) Ecology of Cyanobacteria II, pp. 677-705
dc.relation.referencesWang, Z.P., Zhao, Y., Morphological reversion of Spirulina (Arthrospira) platensis (cyanophyta): from linear to helical1 (2005) J. Phycol., 41 (3), pp. 622-628
dc.relation.referencesOgami, S., Boussac, A., Sugiura, M., Deactivation processes in PsbA1-photosystem II and PsbA3-photosystem II under photoinhibitory conditions in the cyanobacterium Thermosynechococcus elongatus (2012) Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817 (8), pp. 1322-1330
dc.relation.referencesGao, K., Li, P., Watanabe, T., Walter Helbling, E., Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (Spirulina) Platensis (Cyanophyta) (2008) J. Phycol., 44 (3), pp. 777-786
dc.relation.referencesMao, R., Guo, S., Performance of the mixed LED light quality on the growth and energy efficiency of Arthrospira platensis (2018) Appl. Microbiol. Biotechnol., 102 (12), pp. 5245-5254
dc.relation.referencesWang, F.S., Dong, S.R., Zhang, H.Y., Wang, S.Y., Putative model based on iTRAQ proteomics for Spirulina morphogenesis mechanisms (2018) J. Proteome, 171, pp. 73-80
dc.relation.referencesMa, Z., Gao, K., Photoregulation of morphological structure and its physiological relevance in the cyanobacterium Arthrospira (Spirulina) platensis (2009) Planta, 230 (2), pp. 329-337
dc.relation.referencesStirk, W.A., Bálint, P., Tarkowská, D., Novák, O., Maróti, G., Ljung, K., van Staden, J., Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae) (2014) Plant Physiol. Biochem., 79, pp. 66-76
dc.relation.referencesWu, S., Meng, Y., Cao, X., Xue, S., Regulatory mechanisms of oxidative species and phytohormones in marine microalgae Isochrysis zhangjiangensis under nitrogen deficiency (2016) Algal Res., 17, pp. 321-329
dc.relation.referencesZhao, Y., Wang, H.P., Han, B., Yu, X., Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: a review (2019) Bioresour. Technol., 274, pp. 549-556. , December 2018
dc.relation.referencesNipattummakul, N., Ahmed, I.I., Gupta, A.K., Kerdsuwan, S., Hydrogen and syngas yield from residual branches of oil palm tree using steam gasification (2011) Int. J. Hydrog. Energy, 36 (6), pp. 3835-3843
dc.relation.referencesWang, X., Zhao, P., Liu, X., Chen, J., Xu, J., Chen, H., Yan, X., Quantitative profiling method for phytohormones and betaines in algae by liquid chromatography electrospray ionization tandem mass spectrometry (2014) Biomed. Chromatogr., 28 (2), pp. 275-280
dc.relation.referencesHashtroudi, M.S., Ghassempour, A., Riahi, H., Shariatmadari, Z., Khanjir, M., Endogenous auxins in plant growth-promoting Cyanobacteria-Anabaena vaginicola and Nostoc calcicola (2013) J. Appl. Phycol., 25 (2), pp. 379-386
dc.relation.referencesGuldhe, A., Renuka, N., Singh, P., Bux, F., Effect of phytohormones from different classes on gene expression of Chlorella sorokiniana under nitrogen limitation for enhanced biomass and lipid production (2019) Algal Res., 40
dc.relation.referencesJanda, T., Gondor, O.K., Yordanova, R., Szalai, G., Pál, M., Salicylic acid and photosynthesis: signalling and effects (2014) Acta Physiol. Plant., 36 (10), pp. 2537-2546
dc.relation.referencesMateo, A., Funck, D., Mühlenbock, P., Kular, B., Mullineaux, P.M., Karpinski, S., Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis (2006) J. Exp. Bot., 57 (8), pp. 1795-1807
dc.relation.referencesWu, G., Gao, Z., Du, H., Lin, B., Yan, Y., Li, G., Meng, C., The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains (2018) J. Gen. Appl. Microbiol., 64 (1), pp. 42-49
dc.relation.referencesCzerpak, R., Piotrowska, A., Szulecka, K., Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris (2006) Acta Physiol. Plant., 28 (3), pp. 195-203
dc.relation.referencesStirk, W.A., Ordog, V., Novák, O., Rolčík, J., Strnad, M., Balint, P., van Staden, J., Auxin and cytokinin relationships in twenty-four microalgae strains (2013) J. Phycol., 49 (3), pp. 459-467
dc.relation.referencesStirk, W.A., Tarkowská, D., Gruz, J., Strnad, M., Ördög, V., van Staden, J., Effect of gibberellins on growth and biochemical constituents in Chlorella minutissima (Trebouxiophyceae) (2019) S. Afr. J. Bot., 126, pp. 92-98
dc.relation.referencesYang, F., Fan, Y., Wu, X., Cheng, Y., Liu, Q., Feng, L., Yang, W., Auxin-to-gibberellin ratio as a signal for light intensity and quality in regulating soybean growth and matter partitioning (2018) Front. Plant Sci., 9
dc.relation.referencesVonshak, A., Tomaselli, L., Arthrospira (Spirulina) Systematics and ecophysiology (2000) The ecology of cyanobacteria. Their diversity in time and space, pp. 505-669. , B.A. Whitton M. Potts Kluwer Academic Publishers Dordrecht
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem