Mostrar el registro sencillo del ítem

dc.contributor.authorBikerouin M
dc.contributor.authorBalli M
dc.contributor.authorCorrea J.D
dc.contributor.authorMora-Ramos M.E.
dc.date.accessioned2022-09-14T14:33:58Z
dc.date.available2022-09-14T14:33:58Z
dc.date.created2021
dc.identifier.issn15671739
dc.identifier.urihttp://hdl.handle.net/11407/7539
dc.descriptionThe optoelectronic properties of a selected group of Cu-III-VI2 chalcopyrites-based materials are deeply investigated by using the modified Becke-Johnson (mBJ) potential, combined with DFT + U approach. The obtained results are further used to calculate these materials’ theoretical efficiency limit for solar cell applications. The bandgap findings indicate a reliable ±0.2 eV agreement. After evaluating the electronic and optical properties, the spectroscopic limited maximum efficiency (SLME) model was used as a metric for the screening. Besides the bandgap value considered in the Shockley–Queisser model, the SLME requires that the absorption spectra, the radiative recombination losses, and the absorber layer thickness must be considered to adequately calculate the efficiency of considered cells. Our findings unveil that some candidates, such as CuInS2, where an SLME of 30.25% is achieved at a film width of 500 nm can be classified in the category of materials with higher power conversion efficiency. © 2021 Korean Physical Societyeng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85115748171&doi=10.1016%2fj.cap.2021.09.010&partnerID=40&md5=fb0d33e29058111635a1ab23af82ca59
dc.sourceCurrent Applied Physics
dc.titlePrediction of optoelectronic features and efficiency for CuMX2 (M=Ga, In; X=S, Se) semiconductors using mbj+U approximation
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.cap.2021.09.010
dc.subject.keywordChalcopyriteeng
dc.subject.keywordFirst-principles calculationseng
dc.subject.keywordFP-LAPWeng
dc.subject.keywordOptoelectronic propertieseng
dc.subject.keywordSolar cell performanceeng
dc.subject.keywordCalculationseng
dc.subject.keywordCopper compoundseng
dc.subject.keywordEnergy gapeng
dc.subject.keywordOptical propertieseng
dc.subject.keywordSolar cellseng
dc.subject.keywordChalcopyriteeng
dc.subject.keywordEfficiency limitseng
dc.subject.keywordEfficiency modelseng
dc.subject.keywordElectronic and optical propertieseng
dc.subject.keywordFirst principle calculationseng
dc.subject.keywordFP-LAPWeng
dc.subject.keywordMaximum Efficiencyeng
dc.subject.keywordOptoelectronics propertyeng
dc.subject.keywordSolar cell performanceeng
dc.subject.keywordSolar-cell applicationseng
dc.subject.keywordEfficiencyeng
dc.relation.citationvolume32
dc.relation.citationstartpage11
dc.relation.citationendpage23
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationBikerouin, M., AMEEC Team, LERMA, College of Engineering and Architecture, International University of Rabat, Parc Technopolis, Rocade de Rabat-Salé11100, Morocco
dc.affiliationBalli, M., AMEEC Team, LERMA, College of Engineering and Architecture, International University of Rabat, Parc Technopolis, Rocade de Rabat-Salé11100, Morocco
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas. Universidad de Medellín. Medellín, Colombia
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA. Universidad Autónoma Del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos C.P. 62209, Mexico
dc.relation.referencesJanotti, A., Van de Walle, C.G., Fundamentals of zinc oxide as a semiconductor (2009) Rep. Prog. Phys., 72 (12), p. 126501
dc.relation.referencesMandati, S., Dey, S.R., Joshi, S.V., Sarada, B.V., Two-dimensional CuIn1−xGaxSe2 nano-flakes by pulse electrodeposition for photovoltaic applications (2019) Sol. Energy, 181, pp. 396-404
dc.relation.referencesHameed, M.A., AL-Shadeedi, A.N., Abdulhameed, A.N., Ali, O.A., Cu(In,Ga)Se2 an absorber layer of photovoltaic devices (2019) Journal of Physics: Conference Series, 1279. , IOP Publishing
dc.relation.referencesKamikawa, Y., Nishinaga, J., Shibata, H., Ishizuka, S., Efficient narrow band gap Cu(In,Ga)Se2 solar cells with flat surface (2020) ACS Appl. Mater. Interfaces, 12 (40), pp. 45485-45492
dc.relation.referencesMoon, D., Gedi, S., Alhammadi, S., Reddy, V.R.M., Kim, W.K., Surface passivation of a Cu(In,Ga)Se2 photovoltaic absorber using a thin indium sulfide layer (2020) Appl. Surf. Sci., 510, p. 145426
dc.relation.referencesAlhammadi, S., Park, H., Kim, W.K., Optimization of intrinsic ZnO thickness in Cu(In,Ga)Se2-based thin film solar cells (2019) Materials, 12 (9), p. 1365
dc.relation.referencesNakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H., Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35% (2019) IEEE Journal of Photovoltaics, 9 (6), pp. 1863-1867
dc.relation.referencesGreen, M., Dunlop, E., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X., SolAr Cell Efficiency Tables (Version 57), Progress in Photovoltaics: Research and Applications
dc.relation.referencesLi, M., Igbari, F., Wang, Z.-K., Liao, L.-S., Indoor thin-film photovoltaics: Progress and challenges, Advanced Energy Materials 2000641
dc.relation.referencesTodorov, T.K., Bishop, D.M., Lee, Y.S., Materials perspectives for next-generation low-cost tandem solar cells (2018) Sol. Energy Mater. Sol. Cell., 180, pp. 350-357
dc.relation.referencesJost, M., Bertram, T., Koushik, D., Marquez, J.A., Verheijen, M.A., Heinemann, M.D., Kohnen, E., Lang, F., 21.6%-efficient monolithic perovskite/Cu(In, Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces (2019) ACS Energy Letters, 4 (2), pp. 583-590
dc.relation.referencesHibberd, C.J., Chassaing, E., Liu, W., Mitzi, D.B., Lincot, D., Tiwari, A.N., Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers (2010) Prog. Photovoltaics Res. Appl., 18 (6), pp. 434-452
dc.relation.referencesKemell, M., Ritala, M., Leskelä, M., Thin film deposition methods for CuInSe2 solar cells (2005) Crit. Rev. Solid State Mater. Sci., 30 (1), pp. 1-31
dc.relation.referencesRamanujam, J., Singh, U.P., Copper indium gallium selenide based solar cells–a review (2017) Energy Environ. Sci., 10 (6), pp. 1306-1319
dc.relation.referencesChen, S., Gong, X., Wei, S.-H., Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 (X= S and Se) and their alloys (2007) Phys. Rev. B, 75 (20), p. 205209
dc.relation.referencesAguilera, I., Palacios, P., Wahnón, P., Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles (2008) Thin Solid Films, 516 (20), pp. 7055-7059
dc.relation.referencesSoni, A., Dashora, A., Gupta, V., Arora, C., Rérat, M., Ahuja, B., Pandey, R., Electronic and optical modeling of solar cell compounds CuGaSe2 and CuInSe2 (2011) J. Electron. Mater., 40 (11), p. 2197
dc.relation.referencesZhao, H., Persson, C., Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4 (2011) Thin Solid Films, 519 (21), pp. 7508-7512
dc.relation.referencesNayebi, P., Mirabbaszadeh, K., Shamshirsaz, M., Density functional theory of structural, electronic and optical properties of CuXY2 (X= In, Ga and Y= S, Se) chalcopyrite semiconductors (2013) Phys. B Condens. Matter, 416, pp. 55-63
dc.relation.referencesSrour, J., Badawi, M., El Haj Hassan, F., Postnikov, A., Crystal structure and energy bands of (Ga/In)Se and Cu(In,Ga)Se2 semiconductors in comparison (2016) Phys. Status Solidi, 253 (8), pp. 1472-1475
dc.relation.referencesSalehi, H., Gordanian, E., Ab initio study of structural, electronic and optical properties of ternary chalcopyrite semiconductors (2016) Mater. Sci. Semicond. Process., 47, pp. 51-56
dc.relation.referencesHadjab, M., Ibrir, M., Berrah, S., Abid, H., Saeed, M.A., Structural, electronic and optical properties for chalcopyrite semiconducting materials: ab-initio computational study (2018) Optik, 169, pp. 69-76
dc.relation.referencesStoliaroff, A., Latouche, C., Accurate ab initio calculations on various pv-based materials: which functional to be used? (2020) J. Phys. Chem. C, 124 (16), pp. 8467-8478
dc.relation.referencesJaffe, J., Zunger, A., Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors (1984) Phys. Rev. B, 29 (4), p. 1882
dc.relation.referencesJiang, F., Feng, J., Electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy (2007) Semicond. Sci. Technol., 23 (2). , 025001
dc.relation.referencesVidal, J., Botti, S., Olsson, P., Guillemoles, J.-F., Reining, L., Strong interplay between structure and electronic properties in CuIn(Se,S)2: a first-principles study (2010) Phys. Rev. Lett., 104 (5). , 056401
dc.relation.referencesChen, S., Gong, X., Walsh, A., Wei, S.-H., Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds (2009) Phys. Rev. B, 79 (16), p. 165211
dc.relation.referencesJain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Ceder, G., Commentary: the materials project: a materials genome approach to accelerating materials innovation (2013) Apl. Mater., 1 (1). , 011002
dc.relation.referencesShockley, W., Queisser, H.J., Detailed balance limit of efficiency of p-n junction solar cells (1961) J. Appl. Phys., 32 (3), pp. 510-519
dc.relation.referencesRühle, S., Tabulated values of the shockley–queisser limit for single junction solar cells (2016) Sol. Energy, 130, pp. 139-147
dc.relation.referencesYu, L., Zunger, A., Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials (2012) Phys. Rev. Lett., 108 (6). , 068701
dc.relation.referencesSalomé, P., Keller, J., Törndahl, T., Teixeira, J., Nicoara, N., Andrade, R.-R., Stroppa, D., Leitão, J., CdS and Zn1−xSnxOy buffer layers for CIGS solar cells (2017) Sol. Energy Mater. Sol. Cell., 159, pp. 272-281
dc.relation.referencesQian, J., Liu, Y., Song, J., Liu, L., Xu, B., Chen, G., Tian, W., Spectroscopic limited practical efficiency (SLPE) model for organometal halide perovskites solar cells evaluation (2018) Org. Electron., 59, pp. 389-398
dc.relation.referencesZhang, Y., Yuan, X., Sun, X., Shih, B.-C., Zhang, P., Zhang, W., Comparative study of structural and electronic properties of Cu-based multinary semiconductors (2011) Phys. Rev. B, 84 (7). , 075127
dc.relation.referencesJaffe, J., Zunger, A., Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2 (1983) Phys. Rev. B, 28 (10), p. 5822
dc.relation.referencesJiang, H., Gomez-Abal, R.I., Rinke, P., Scheffler, M., Localized and itinerant states in lanthanide oxides united by GW@LDA+U (2009) Phys. Rev. Lett., 102 (12), p. 126403
dc.relation.referencesJiang, H., Gomez-Abal, R.I., Rinke, P., Scheffler, M., First-principles modeling of localized d states with the GW@LDA+U approach (2010) Phys. Rev. B, 82 (4). , 045108
dc.relation.referencesPatrick, C.E., Giustino, F., GW quasiparticle bandgaps of anatase TiO2 starting from DFT+U (2012) J. Phys. Condens. Matter, 24 (20), p. 202201
dc.relation.referencesTran, F., Blaha, P., Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential (2009) Phys. Rev. Lett., 102 (22), p. 226401
dc.relation.referencesKoller, D., Tran, F., Blaha, P., Merits and limits of the modified becke-johnson exchange potential (2011) Phys. Rev. B, 83 (19), p. 195134
dc.relation.referencesKoller, D., Tran, F., Blaha, P., Improving the modified becke-johnson exchange potential (2012) Phys. Rev. B, 85 (15), p. 155109
dc.relation.referencesJiang, H., Band gaps from the tran-blaha modified becke-johnson approach: a systematic investigation (2013) J. Chem. Phys., 138 (13), p. 134115
dc.relation.referencesBikerouin, M., Balli, M., Farkous, M., El-Yadri, M., Dujardin, F., Abdellah, A.B., Feddi, E., Mora-Ramos, M., Effect of lattice deformation on electronic and optical properties of CuGaSe2: ab-initio calculations (2020) Thin Solid Films, 696, p. 137783
dc.relation.referencesHohenberg, P., Kohn, W., Inhomogeneous electron gas (1964) Phys. Rev., 136 (3B), p. B864
dc.relation.referencesKohn, W., Sham, L.J., Self-consistent equations including exchange and correlation effects (1965) Phys. Rev., 140 (4A), p. A1133
dc.relation.referencesBlaha, P., Schwarz, K., Madsen, G.K., Kvasnicka, D., Luitz, J., wien2k, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties
dc.relation.referencesBlaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G.K., Marks, L.D., WIEN2k: an APW+lo program for calculating the properties of solids (2020) J. Chem. Phys., 152 (7). , 074101
dc.relation.referencesMonkhorst, H.J., Pack, J.D., Special points for brillouin-zone integrations (1976) Phys. Rev. B, 13 (12), p. 5188
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77 (18), p. 3865
dc.relation.referencesZhang, Y., Zhang, J., Gao, W., Abtew, T.A., Wang, Y., Zhang, P., Zhang, W., Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified becke-johnson potential plus an on-site Coulomb U (2013) J. Chem. Phys., 139 (18), p. 184706
dc.relation.referencesDong, C., Persson, C., Vayssieres, L., Augustsson, A., Schmitt, T., Mattesini, M., Ahuja, R., Guo, J.-H., Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation (2004) Phys. Rev. B, 70 (19), p. 195325
dc.relation.referencesJanotti, A., Segev, D., Van de Walle, C.G., Effects of cation d states on the structural and electronic properties of III-nitride and II-oxide wide-band-gap semiconductors (2006) Phys. Rev. B, 74 (4). , 045202
dc.relation.referencesKarazhanov, S.Z., Ravindran, P., Kjekshus, A., Fjellvåg, H., Grossner, U., Svensson, B., Coulomb correlation effects in zinc monochalcogenides (2006) J. Appl. Phys., 100 (4). , 043709
dc.relation.referencesMadsen, G.K.H., Novák, P., Charge order in magnetite. an LDA+U study (2005) EPL (Europhysics Letters), 69 (5), p. 777
dc.relation.referencesAnisimov, V.I., Solovyev, I., Korotin, M., Czyżyk, M., Sawatzky, G., Density-functional theory and NiO photoemission spectra (1993) Phys. Rev. B, 48 (23), p. 16929
dc.relation.referencesCzyżyk, M., Sawatzky, G., Local-density functional and on-site correlations: the electronic structure of La2CuO4 and LaCuO3 (1994) Phys. Rev. B, 49 (20), p. 14211
dc.relation.referencesZhang, Y., Wang, Y., Xi, L., Qiu, R., Shi, X., Zhang, P., Zhang, W., Electronic structure of antifluorite Cu2X (X= S, Se, Te) within the modified becke-johnson potential plus an on-site coulomb U (2014) J. Chem. Phys., 140 (7). , 074702
dc.relation.referencesObukuro, Y., Ninomiya, K., Arai, M., Okuyama, Y., Sakai, G., Matsushima, S., First-principles study on LaYbO3 as the localized f electrons containing system with MBJ–LDA+ U approach (2017) Comput. Mater. Sci., 126, pp. 7-11
dc.relation.referencesDelin, A., Ravindran, P., Eriksson, O., Wills, J., Full-potential optical calculations of lead chalcogenides (1998) Int. J. Quant. Chem., 69 (3), pp. 349-358
dc.relation.referencesKronig, R.D.L., On the theory of dispersion of x-rays (1926) Josa, 12 (6), pp. 547-557
dc.relation.referencesKramers, H.A., La diffusion de la lumiere par les atomes (1927) Atti Cong. Intern. Fisica (Transactions of Volta Centenary Congress) Como, 2, pp. 545-557
dc.relation.referencesSpiess, H.W., Haeberlen, U., Brandt, G., Räuber, A., Schneider, J., Nuclear magnetic resonance in IB–III–VI2 semiconductors (1974) Phys. Status Solidi B, 62 (1), pp. 183-192
dc.relation.referencesNeumann, H., Simple theoretical estimate of surface energy, bulk modulus, and atomization energy of AIBIIIC compounds (1983) Cryst. Res. Technol., 18 (5), pp. 665-670
dc.relation.referencesStandard, A., G173-03 (Reapproved 2012), Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface, West Conshohocken, PA: ASTM International
dc.relation.referencesEmery, K., Myers, D., Reference Solar Spectral Irradiance: Air Mass 1.5, Center, (RERD, Ed)
dc.relation.referencesMurnaghan, F., The compressibility of media under extreme pressures (1944) Proc. Natl. Acad. Sci. U.S.A., 30 (9), p. 244
dc.relation.referencesGhosh, A., Thangavel, R., Rajagopalan, M., Electronic and optical modeling of solar cell compound CuXY2 (X= In, Ga, Al
dc.relation.referencesY= S, Se, Te): first-principles study via tran–blaha-modified becke–johnson exchange potential approach (2015) J. Mater. Sci., 50 (4), pp. 1710-1717
dc.relation.referencesPohl, J., Albe, K., Thermodynamics and kinetics of the copper vacancy in CuInSe2, CuGaSe2, CuInS2, and CuGaS2 from screened-exchange hybrid density functional theory (2010) J. Appl. Phys., 108 (2)
dc.relation.referencesPaier, J., Asahi, R., Nagoya, A., Kresse, G., Cu2ZnSnS4 as a potential photovoltaic material: a hybrid Hartree-Fock density functional theory study (2009) Phys. Rev. B, 79 (11), p. 115126
dc.relation.referencesNguimdo, G.D., Joubert, D.P., A density functional (PBE, PBEsol, HSE06) study of the structural, electronic and optical properties of the ternary compounds AgAlX2 (X= S, Se, Te) (2015) The European Physical Journal B, 88 (5), p. 113
dc.relation.referencesTell, B., Shay, J., Kasper, H., Electrical properties, optical properties, and band structure of CuGaS2 and CuInS2 (1971) Phys. Rev. B, 4 (8), p. 2463
dc.relation.referencesShay, J., Tell, B., Kasper, H., Schiavone, L., p-d hybridization of the valence bands of I − III − VI2 compounds (1972) Phys. Rev. B, 5 (12), p. 5003
dc.relation.referencesShay, J., Tell, B., Kasper, H., Schiavone, L., Electronic structure of AgInSe2 and CuInSe2 (1973) Phys. Rev. B, 7 (10), p. 4485
dc.relation.referencesSchnohr, C., Compound semiconductor alloys: from atomic-scale structure to bandgap bowing (2015) Appl. Phys. Rev., 2 (3). , 031304
dc.relation.referencesShay, J.L., Wernick, J.H., (2017) Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications: International Series of Monographs in the Science of the Solid State, 7. , Elsevier
dc.relation.referencesChen, X.-D., Chen, L., Sun, Q.-Q., Zhou, P., Zhang, D.W., Hybrid density functional theory study of Cu(In1−xGax)Se2 band structure for solar cell application (2014) AIP Adv., 4 (8). , 087118
dc.relation.referencesXiao, H., Tahir-Kheli, J., Goddard, W.A., III, Accurate band gaps for semiconductors from density functional theory (2011) J. Phys. Chem. Lett., 2 (3), pp. 212-217
dc.relation.referencesPerdew, J.P., Levy, M., Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities (1983) Phys. Rev. Lett., 51 (20), p. 1884
dc.relation.referencesRashkeev, S.N., Lambrecht, W.R., Second-harmonic generation of I − III − VI2 chalcopyrite semiconductors: effects of chemical substitutions (2001) Phys. Rev. B, 63 (16), p. 165212
dc.relation.referencesBecke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior (1988) Phys. Rev., 38 (6), p. 3098
dc.relation.referencesKörbel, S., Kammerlander, D., Sarmiento-Pérez, R., Attaccalite, C., Marques, M.A., Botti, S., Optical properties of Cu-chalcogenide photovoltaic absorbers from self-consistent GW and the bethe-salpeter equation (2015) Phys. Rev. B, 91 (7). , 075134
dc.relation.referencesMandal, S., Haule, K., Rabe, K.M., Vanderbilt, D., Systematic beyond-DFT study of binary transition metal oxides (2019) npj Computational Materials, 5 (1), pp. 1-8
dc.relation.referencesRife, J., Dexter, R., Bridenbaugh, P., Veal, B., Optical properties of the chalcopyrite semiconductors ZnGeP2, ZnGeAs2, CuGaS2, CuAlS2, CuInSe2, and AgInSe2 (1977) Phys. Rev. B, 16 (10), p. 4491
dc.relation.referencesBraun, W., Goldmann, A., Cardona, M., Partial density of valence states of amorphous and crystalline AgInTe2 and CuInS2 (1974) Phys. Rev. B, 10 (12), p. 5069
dc.relation.referencesWei, S.-H., Zunger, A., Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys (1995) J. Appl. Phys., 78 (6), pp. 3846-3856
dc.relation.referencesShankar, A., Thapa, R., Mandal, P., Electronic and optical properties of CuInTe2 (2016) Journal of Physics: Conference Series, 765
dc.relation.referencesLi, Y., Fan, W., Sun, H., Cheng, X., Li, P., Zhao, X., Computational insight into the effect of monovalent cations on the electronic, optical, and lattice dynamic properties of XInSe2 (X= Cu, Ag, Li) (2011) J. Appl. Phys., 109 (11), p. 113535
dc.relation.referencesLaksari, S., Chahed, A., Abbouni, N., Benhelal, O., Abbar, B., First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2 (2006) Comput. Mater. Sci., 38 (1), pp. 223-230
dc.relation.referencesAlonso, M., Wakita, K., Pascual, J., Garriga, M., Yamamoto, N., Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2 (2001) Phys. Rev. B, 63 (7). , 075203
dc.relation.referencesLevcenko, S., Syrbu, N., Tezlevan, V., Arushanov, E., Doka-Yamigno, S., Schedel-Niedrig, T., Lux-Steiner, M.C., Optical spectra and energy band structure of single crystalline CuGaS2 and CuInS2 (2007) J. Phys. Condens. Matter, 19 (45), p. 456222
dc.relation.referencesPaulson, P.D., Birkmire, R.W., Shafarman, W.N., Optical characterization of CuIn1−xGaxSe2 alloy thin films by spectroscopic ellipsometry (2003) J. Appl. Phys., 94 (2), pp. 879-888
dc.relation.referencesDe Wolf, S., Holovsky, J., Moon, S.-J., Loper, P., Niesen, B., Ledinsky, M., Haug, F.-J., Ballif, C., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance (2014) J. Phys. Chem. Lett., 5 (6), pp. 1035-1039
dc.relation.referencesAlmansouri, I., Ho-Baillie, A., Green, M.A., Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices (2015) Jpn. J. Appl. Phys., 54 (8S1). , 08KD04
dc.relation.referencesGreen, M.A., Ho-Baillie, A., Snaith, H.J., The emergence of perovskite solar cells (2014) Nat. Photonics, 8 (7), pp. 506-514
dc.relation.referencesShirayama, M., Kadowaki, H., Miyadera, T., Sugita, T., Tamakoshi, M., Kato, M., Fujiseki, T., Murakami, T.N., Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3 (2016) Physical Review Applied, 5 (1)
dc.relation.referencesGreen, M.A., Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients (2008) Sol. Energy Mater. Sol. Cell., 92 (11), pp. 1305-1310
dc.relation.referencesLeveque, G., Reflectivity extrapolations in kramers-kronig analysis (1977) J. Phys. C Solid State Phys., 10 (23), p. 4877
dc.relation.referencesJezierski, K., A linear-equations algorithm for reflectivity extrapolation determination in kramers-kronig analysis (1984) J. Phys. C Solid State Phys., 17 (3), p. 475
dc.relation.referencesBlase, X., Duchemin, I., Jacquemin, D., Loos, P.-F., The bethe–salpeter equation formalism: from physics to chemistry (2020) J. Phys. Chem. Lett., 11 (17), pp. 7371-7382
dc.relation.referencesKumar, V., Singh, J., Model for Calculating the Refractive Index of Different Materials
dc.relation.referencesOhmer, M., Goldstein, J., Zelmon, D., Saxler, A., Hegde, S., Wolf, J., Schunemann, P., Pollak, T., Infrared properties of AgGaTe2, a nonlinear optical chalcopyrite semiconductor (1999) J. Appl. Phys., 86 (1), pp. 94-99
dc.relation.referencesBai, L., Lin, Z., Wang, Z., Chen, C., Lee, M.-H., Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X= S, Se, and Te) crystals (2004) J. Chem. Phys., 120 (18), pp. 8772-8778
dc.relation.referencesSalehi, H., Gordanian, E., Ab initio study of structural, electronic and optical properties of ternary chalcopyrite semiconductors (2016) Mater. Sci. Semicond. Process., 47, pp. 51-56
dc.relation.referencesHarris, S.E., Tunable optical parametric oscillators (1969) Proc. IEEE, 57 (12), pp. 2096-2113
dc.relation.referencesFranken, E.P., Hill, A.E., Peters, C.E., Weinreich, G., Generation of optical harmonics (1961) Phys. Rev. Lett., 7 (4), p. 118
dc.relation.referencesScheer, R., Schock, H.-W., Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices (2011), John Wiley & Sons
dc.relation.referencesYan, C., Huang, J., Sun, K., Johnston, S., Zhang, Y., Sun, H., Pu, A., Eder, K., Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment (2018) Nature Energy, 3 (9), pp. 764-772
dc.relation.referencesBi, D., Yi, C., Luo, J., Décoppet, J.-D., Zhang, F., Zakeeruddin, S.M., Li, X., Grätzel, M., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% (2016) Nature Energy, 1 (10), pp. 1-5
dc.relation.referencesKomiya, R., Fukui, A., Murofushi, N., Koide, N., Yamanaka, R., Katayama, H., Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module (2011) Technical Digest, 21st International Photovoltaic Science and Engineering Conference, 2
dc.relation.referencesYoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Uzu, H., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% (2017) Nature energy, 2 (5), p. 17032
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem