Mostrar el registro sencillo del ítem

dc.contributor.authorHidalgo C.A
dc.contributor.authorVega J.A.
dc.date.accessioned2022-09-14T14:33:58Z
dc.date.available2022-09-14T14:33:58Z
dc.date.created2021
dc.identifier.issn0921030X
dc.identifier.urihttp://hdl.handle.net/11407/7542
dc.descriptionLandslides are natural hazards that represent a huge economic burden and cause the loss of human life around the world. In countries such as Colombia, the mass movement events that cause the highest number of deaths and economic losses are often related to river or stream flooding caused by landslides in basins. Therefore, it is necessary to develop tools that estimate and assess landslide risk in such areas. This study presents a methodology to assess the risk associated with landslides in streams or river basins. The hazard posed by landslides is evaluated considering probabilistic methods that include the effects of rainfall and earthquakes. In addition, this study assesses the probability of a sliding mass reaching riverbeds and the probability of riverbed obstruction. Vulnerability is then estimated using impact curves based on the obstruction height. Finally, risk is estimated as the probability that economic losses occur along the riverbed. This methodology is based on probability methods, such as the first-order second-moment (FOSM) method, and the punctual estimates method (PEM). The methodology was applied in the La Liboriana River basin, in the municipality of Salgar in the northwestern Colombian Andes. On May 18, 2015, this mountainous and tropical area suffered a flash flood caused by landslides in the basin, which killed more than 100 inhabitants and caused infrastructure damage and significant economic losses. The results suggest that the proposed method coherently assesses the hazard posed by landslides and that the expected losses are comparable with the records from previous events. © 2021, The Author(s), under exclusive licence to Springer Nature B.V.eng
dc.language.isoeng
dc.publisherSpringer Science and Business Media B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85107720814&doi=10.1007%2fs11069-021-04836-0&partnerID=40&md5=28f2b5ff0fdb440bdbc9db23584ef796
dc.sourceNatural Hazards
dc.titleProbabilistic landslide risk assessment in water supply basins: La Liboriana River Basin (Salgar-Colombia)
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civil
dc.type.spaArtículo
dc.identifier.doi10.1007/s11069-021-04836-0
dc.subject.keywordLandslideeng
dc.subject.keywordProbabilistic assessmenteng
dc.subject.keywordRiskeng
dc.subject.keywordRiver basinseng
dc.subject.keywordVulnerability riverbedseng
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationHidalgo, C.A., Program of Civil Engineering, Faculty of Engineering, University of Medellín, Carrera 87 N° 30 – 65 (Bloque 4), Medellín, Colombia
dc.affiliationVega, J.A., Program of Civil Engineering, Faculty of Engineering, University of Medellín, Carrera 87 N° 30 – 65 (Bloque 4), Medellín, Colombia
dc.relation.referencesAIS (2010) Colombian Code for Earthquake-Resistant Construction (NSR-10). Association of Earthquake Engineering, , Colombia, in Spanish
dc.relation.referencesAlbano, R., Sole, A., Geospatial methods and tools for natural risk management and communications (2018) ISPRS Int J Geo-Inf, 7, p. 470
dc.relation.referencesArango, M., Parra, M., Hidalgo, C., Mechanical and hydraulic behaviour of unsaturated residual soils (2019) IOP Conf Series Earth Environ Sci, 221, pp. 1-10
dc.relation.referencesBaum, R.L., Savage, W.Z., Godt, J.W., TRIGRS—a fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Version 2.0 (2002) U.S. Geol. Surv. Open-File Rep., , https://doi.org/10.3133/ofr02424
dc.relation.referencesBryant, E.A., Head, L., Morrison, R.J., (2005) Planning for Natural Hazards-How Can We Mitigate the Impacts. De Proceedings of a Symposium Planning for Natural Hazards-How Can We Mitigate the Impacts
dc.relation.referencesChalkias, C., Ferentinou, M., Polykretis, C., GIS supported landslide susceptibility modeling at regional scale: an expert-based fuzzy weighting method (2014) ISPRS Int J Geo-Inf, 3, pp. 523-539
dc.relation.referencesChen, H., Lee, C., Geohazards of slope mass movement and its prevention in Hong Kong (2004) Eng Geol, pp. 3-25
dc.relation.referencesChowdhury, R., Flentje, P., Bhattacharya, G., (2010) Geotechnical slope analysis, , Taylor & Francis, London
dc.relation.referencesDonnini, M., Modica, M., Salvati, P., Marchesini, I., Rossi, M., Guzzetti, F., Zoboli, R., Economic landslide susceptibility under a socio-economic perspective: an application to Umbria Region (Central Italy) (2020) Rev Reg Res, 40, pp. 159-188
dc.relation.referencesDragicevic, S., Lai, T., Balram, S., GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments (2015) Habit Int, 45, pp. 114-125
dc.relation.referencesDunant, A., Bebbington, M., Davies, T., Probabilistic cascading multi-hazard risk assessment methodology using graph theory, a New Zealand trial (2021) Int J Disaster Risk Reduct, 54, p. 102018
dc.relation.referencesFan, X., Dufresne, A., Whiteley, J., Yunus, A.P., Subramanian, S.S., Okeke, C.A., Recent technological and methodological advances for the investigation of landslide dams (2021) Earth Sci Rev, 218, p. 103646
dc.relation.referencesFuchs, S., Heiser, M., Schlögl, M., Zischg, A., Papathoma-Köhle, M., Keiler, M., Short communication: a model to predict flood loss in mountain areas (2019) Environ Model Softw, 117, pp. 176-180
dc.relation.referencesGigović, L., Drobnjak, S., Pamučar, D., The application of the hybrid GIS spatial multi-criteria decision analysis best–worst methodology for landslide susceptibility mapping (2019) ISPRS Int J Geo-Inf, 8, p. 79
dc.relation.referencesGuimaraes-Silva, T., (2015) Quantitative Assessment of Vulnerability Associated with Processes of Landslides. De Workshop in Geotechnical Risk Analysis in Slopes, , Medellín
dc.relation.referencesHidalgo, C., Assis, A., Quantitative risk assessment for landslides triggered by rainfall on a highway in northwestern Colombia (2011) Proceedings of the XII Panamerican Geotechnical Conference, , Toronto, Ontario, Canada
dc.relation.referencesHidalgo, C., Vega, J., Estimation of the hazard of landslides triggered by earthquakes and rainfall Valle de Aburrá-Colombia (2014) Revista EIA, 11, pp. 103-117
dc.relation.referencesHidalgo, C.A., Vega, J.A., Parra, M., (2018) Effect of the Rainfall Infiltration Processes on the Landslide Hazard Assessment of Unsaturated Soils in Tropical Mountainous Regions, De Engineering and Mathematical Topics in Rainfall, pp. 163-185. , https://doi.org/10.5772/67933, Hromadka II TVV, Rao P, Londres, Intechopen
dc.relation.referencesHoyos, C.D., Ceballos, L.I., Pérez, J.S., Sepulveda, J., López, S.M., Zuluaga, M.D., Velásquez, N., Guzmán, Z.M., Hydrometeorological conditions leading to the 2015 Salgar Flash Flood: Lessons for vulnerable regions in tropical complex Terrain (2019) Nhess, , https://doi.org/10.5194/nhess-2019-171
dc.relation.referencesIsaza-Restrepo, P.A., Martinez, H.E., Hidalgo, C.A., Methodology for quantitative landslide risk analysis in residential projects (2016) Habit Int, 53, pp. 403-412
dc.relation.referencesJaiswal, P., Van Westen, C.J., Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds (2009) Geomorph, 112, pp. 96-105
dc.relation.referencesJaiswal, P., van Westen, C., (2009) Rainfall-Based Temporal Probability for Landslide Initiation along Transportation Routes in Southern India.Landslide Processes: From Geomorphologic Mapping to Dynamic Modelling, , Strasbourg, France
dc.relation.referencesKeles, F., Nefeslioglu, H.A., Infinite slope stability model and steady-state hydrology-based shallow landslide susceptibility evaluations: The Guneysu catchment area (Rize, Turkey) (2021) CATENA, 200, p. 105161
dc.relation.referencesKlose, M., (2015) Landslide databases as tools for integrated assessment of landslide risk, , Springer, Berlin
dc.relation.referencesKo, F.W., Correlation between rainfall and natural terrain landslide occurrence in Hong Kong (2005) Geotech. Eng., p. 77
dc.relation.referencesLee, J., Lee, D.K., Application of industrial risk management practices to control natural hazards, facilitating risk communication (2018) ISPRS Int J Geo-Inf, 7, p. 377
dc.relation.references(2013) Technical Guide for the Formulation of the Plans of Ordination and Management of Hydrographic Basins (Spanish), , Bogotá
dc.relation.referencesMarín, R.J., Velásquez, M.F., Sánchez, O., Applicability and performance of deterministic and probabilistic physically based landslide modeling in a data-scarce environment of the Colombian Andes (2021) J S Am Earth Sci, 108, p. 103175
dc.relation.referencesMarin, R.J., García, E.F., Aristizábal, E., Assessing the effectiveness of TRIGRS for predicting unstable areas in a tropical mountain basin (Colombian Andes) (2021) Geotech Geol Eng, 39, pp. 2329-2346
dc.relation.referencesMoreno, H.A., Vélez, M.A., Montoya, J.D., Rhenals, R.L., The rainfall and landslides in Antioquia: analysis of its occurrence in interannual, intraannual and daily scales (2006) Revista EIA, 5, pp. 59-69
dc.relation.referencesPapathoma-Kohle, M., Zischg, A., Fuchs, S., Glade, T., Keiler, M., Loss estimation for landslides in mountain areas—an integrated toolbox for vulnerability assessment and damage documentation (2015) Environ Model Softw, 63, pp. 156-169
dc.relation.referencesParra, M., (2015) Model for the study of the hazard of mass movements detonated by rains in the Llanaditas neighborhood of Medellin city (Spanish), , Universidad Nacional de Colombia, Medellín
dc.relation.referencesPetley, D., The global occurrence of fatal landslides in 2007 (2008) International Conference on Management of Landslide Hazard in the Asia–Pacific Region. Japan Landslide Society, Tokyo Japan, pp. 590-600. , Tokyo, Japan
dc.relation.referencesPradhan, A.M.S., Kim, Y.T., Evaluation of a combined spatial multi-criteria evaluation model and deterministic model for landslide susceptibility mapping (2016) CATENA, 140, pp. 125-139
dc.relation.referencesRahimi, A., Rahardjo, H., Leong, E.C., Effect of hydraulic properties of soil on rainfall-induced slope failure (2010) Eng Geo, 114, pp. 135-143
dc.relation.referencesRuiz-Vásquez, D., Aristizábal, E., Landslide susceptibility assessment in mountainous and tropical scarce-data regions using remote sensing data: A case study in the Colombian Andes (2018) Geophysical Research Abstracts, 20. , EGU2018-3408, 2018. EGU General Assembly 2018
dc.relation.referencesMethodological guide for Studies of Hazard, Vulnerability and Risk due to Mass Movements (Spanish) (2016) Servicio Geologico Colombiano, pp. 978-958
dc.relation.referencesSepúlveda, S.A., Petley, D.N., Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean (2015) Nat Hazards Earth Syst Sci, 15, pp. 1821-1833
dc.relation.referencesThiery, Y., Terrier, M., Colas, B., Fressard, M., Maquaire, O., Grandjean, G., Gourdier, S., Improvement of landslide hazard assessments for regulatory zoning in France: STATE–OF–THE-ART perspectives and considerations (2020) Int J Disaster Risk Reduct, 47, p. 101562
dc.relation.referencesUzielli, M., Nadim, F., Lacasse, S., Kaynia, A., A conceptual framework for quantitative estimation of physical vulnerability to landslides (2008) Eng Geol, 102, pp. 251-256
dc.relation.referencesVandromme, R., Bernardie, Y., Sedan, O., ALICE (Assessment of Landslides induced by Climatic Events): a single tool to integrate shallow and deep landslides for susceptibility and hazard assessment (2020) Geomorph, 367, p. 107307
dc.relation.referencesVega, J.A., Hidalgo, C.A., Quantitative risk assessment of landslides triggered by earthquakes and rainfall based on direct costs of urban buildings (2016) Geomorph, 273, pp. 217-235
dc.relation.referencesVega, J.A., Hidalgo, C.A., Risk assessment of earthquake-induced landslides in urban zones. In: Mikoš M, Tiwari B, Yin Y, Sassa K (eds) Advancing culture of living with landslide—advances in landslide (2017) Science, 2. , https://doi.org/10.1007/978-3-319-53498-5_108
dc.relation.referencesVelásquez, N., Hoyos, C.D., Vélez, J.I., Zapata, E., Reconstructing the Salgar 2015 flash flood using radar retrievals and a conceptual modeling framework: A basis for a better flood generating mechanisms discrimination (2020) Hydrol Earth Syst Sci Discuss, , https://doi.org/10.5194/hess-2018-452
dc.relation.referencesZhong, Q., Wang, L., Chen, S., Chen, Z., Shan, Y., Zhang, Q., Breaches of embankment and landslide dams—state of the art review (2021) Earth Sci Rev, 216, p. 103597
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem