Mostrar el registro sencillo del ítem

dc.contributor.authorKoverga A.A
dc.contributor.authorFlórez E
dc.contributor.authorRodriguez J.A.
dc.date.accessioned2022-09-14T14:33:59Z
dc.date.available2022-09-14T14:33:59Z
dc.date.created2021
dc.identifier.issn3603199
dc.identifier.urihttp://hdl.handle.net/11407/7546
dc.descriptionThe adsorption of atomic H and H2 on copper mono- and submonolayers supported on hexagonal WC(0001) surfaces has been investigated using density functional theory with the Perdew–Burke–Ernzerhof exchange correlation functional and D2 van der Waals corrections. Results evidence the impact of the termination of the carbide substrate on fundamental properties of Cu adatoms, and, hence, on the stability of molecular and atomic hydrogen, defining copper's catalytic activity for hydrogen evolution reaction. Using H adsorption energy as a descriptor, catalytic activity of Cu adlayers for hydrogen evolution reaction was estimated using traditional volcano curves and a curve, obtained at low hydrogen coverage. Obtained results evidence that copper adlayers supported on the WC may present a viable low-cost alternative to noble metal-based catalysts, with improved catalytic activity compared to that of copper. This, potentially, can be a useful basis for designing and developing novel functional materials with predetermined catalytic properties. © 2021 Hydrogen Energy Publications LLCeng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85108200406&doi=10.1016%2fj.ijhydene.2021.05.055&partnerID=40&md5=c757a08ef57e304ae33d6bba99d1afbc
dc.sourceInternational Journal of Hydrogen Energy
dc.titlePushing Cu uphill of the volcano curve: Impact of a WC support on the catalytic activity of copper toward the hydrogen evolution reaction
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.ijhydene.2021.05.055
dc.subject.keywordCueng
dc.subject.keywordDFTeng
dc.subject.keywordElectrocatalysiseng
dc.subject.keywordHEReng
dc.subject.keywordSupported monolayereng
dc.subject.keywordTMCeng
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationKoverga, A.A., Grupo de Investigación Mat&Mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Grupo de Investigación Mat&Mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
dc.relation.referencesYoun, D.H., Han, S., Kim, J.Y., Kim, J.Y., Park, H., Choi, S.H., Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support (2014) ACS Nano, 8, pp. 5164-5173
dc.relation.referencesZheng, Y., Jiao, Y., Jaroniec, M., Qiao, S.Z., Advancing the electrochemistry of the hydrogen evolution reaction through combining experiment (2015) Angew Chem Int Ed, 54, pp. 52-65
dc.relation.referencesNi, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production (2007) Renew Sustain Energy Rev, 11, pp. 401-425
dc.relation.referencesKudo, A., Miseki, Y., Heterogeneous photocatalyst materials for water splitting (2009) Chem Soc Rev, 38, pp. 253-278
dc.relation.referencesLevy, R.B., Boudart, M., Platinum-like behavior of tungsten carbide in surface catalysis (1973) Science, 181, pp. 547-549
dc.relation.referencesWeigert, E.C., Zellner, M.B., Stottlemyer, A.L., Chen, J.G., A combined surface science and electrochemical study of tungsten carbides as anode electrocatalysts (2007) Top Catal, 46, pp. 349-357
dc.relation.referencesBrady, C.D.A., Rees, E.J., Burstein, G.T., Electrocatalysis by nanocrystalline tungsten carbides and the effects of codeposited silver (2008) J Power Sources, 179, pp. 17-26
dc.relation.referencesGanesan, R., Ham, D.J., Lee, J.S., Platinized mesoporous tungsten carbide for electrochemical methanol oxidation (2007) Electrochem Commun, 9, pp. 2576-2579
dc.relation.referencesMcIntyre, D., Burstein, G., Vossen, A., Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide (2002) J Power Sources, 107, pp. 67-73
dc.relation.referencesRodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: production of CO, methanol, and methane (2013) J Catal, 307, pp. 162-169
dc.relation.referencesEsposito, D.V., Chen, J.G., Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations (2011) Energy Environ Sci, 4, pp. 3900-3912
dc.relation.referencesHu, F., Cui, G., Wei, Z., Shen, P.K., Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes (2008) Electrochem Commun, 10, pp. 1303-1306
dc.relation.referencesGómez-Marín, A.M., Ticianelli, E.A., Effect of transition metals in the hydrogen evolution electrocatalytic activity of molybdenum carbide (2017) Appl Catal B Environ, 209, pp. 600-610
dc.relation.referencesChen, M., Ma, Y., Zhou, Y., Liu, C., Qin, Y., Fang, Y., Influence of transition metal on the hydrogen evolution reaction over nano-molybdenum-carbide catalyst (2018) Catalysts, 8, p. 294
dc.relation.referencesKoverga, A.A., Gómez-Marín, A.M., Dorkis, L., Flórez, E., Ticianelli, E.A., Role of transition metals on TM/Mo2C composites: hydrogen evolution activity in mildly acidic and alkaline media (2020) ACS Appl Mater Interfaces, 12, pp. 27150-27165
dc.relation.referencesVasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., Is platinum necessary for efficient hydrogen evolution? – DFT study of metal monolayers on tungsten carbide (2013) Int J Hydrogen Energy, 38, pp. 16071-16079
dc.relation.referencesBjörketun, M.E., Bondarenko, A.S., Abrams, B.L., Chorkendorff, I., Rossmeisl, J., Screening of electrocatalytic materials for hydrogen evolution (2010) Phys Chem Chem Phys, 12, pp. 10536-10541
dc.relation.referencesNørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Trends in the exchange current for hydrogen evolution (2005) J Electrochem Soc, 152, p. J23
dc.relation.referencesMichalsky, R., Zhang, Y.J., Peterson, A.A., Trends in the hydrogen evolution activity of metal carbide catalysts (2014) ACS Catal, 4, pp. 1274-1278
dc.relation.referencesTrasatti, S., Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions (1972) J Electroanal Chem, 39, pp. 163-184
dc.relation.referencesKresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals (1993) Phys Rev B, 47, pp. 558-561
dc.relation.referencesKresse, G., Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metamorphous- semiconductor transition in germanium (1994) Phys Rev B, 49, pp. 14251-14269
dc.relation.referencesKresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys Rev B Condens Matter, 54, pp. 11169-11186
dc.relation.referencesKresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set (1996) Comput Mater Sci, 6, pp. 15-50
dc.relation.referencesMonkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys Rev B, 13, pp. 5188-5192
dc.relation.referencesMethfessel, M., Paxton, A.T., High-precision sampling for Brillouin-zone integration in metals (1989) Phys Rev B, 40, pp. 3616-3621
dc.relation.referencesBlöchl, P.E., Projector augmented-wave method (1994) Phys Rev B, 50, pp. 17953-17979
dc.relation.referencesJoubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys Rev B Condens Matter, 59, pp. 1758-1775
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys Rev Lett, 77, pp. 3865-3868
dc.relation.referencesGrimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections (2004) J Comput Chem, 25, pp. 1463-1473
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2 reduction (2020) Phys Chem Chem Phys, 22, pp. 13666-13679
dc.relation.referencesBader, R.F.W., Atoms in molecules: a quantum theory (1990), Oxford University Press Oxford, U.K
dc.relation.referencesHenkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density (2006) Comput Mater Sci, 36, pp. 354-360
dc.relation.referencesKoverga, A.A., Frank, S., Koper, M.T.M., Density Functional Theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces (2013) Electrochim Acta, 101, pp. 244-253
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO2, and H2 interactions with (0001) and (001) tungsten carbide surfaces: importance of carbon and metal sites (2019) J Phys Chem C, 123, pp. 8871-8883
dc.relation.referencesMomma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data (2011) J Appl Crystallogr, 44, pp. 1272-1276
dc.relation.referencesHumphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graph, 14, pp. 33-38
dc.relation.referencesHenkelman, G., Uberuaga, B.P., Jónsson, H., Climbing image nudged elastic band method for finding saddle points and minimum energy paths (2000) J Chem Phys, 113, pp. 9901-9904
dc.relation.referencesHenkelman, G., Jónsson, H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points (2000) J Chem Phys, 113, pp. 9978-9985
dc.relation.referencesWannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Engineering transition-metal-coated tungsten carbides for efficient and selective electrochemical reduction of CO2 to methane (2015) ChemSusChem, 8, pp. 2745-2751
dc.relation.referencesWannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic activity and product selectivity trends for carbon dioxide electroreduction on transition metal-coated tungsten carbides (2017) J Phys Chem C, 121, pp. 20306-20314
dc.relation.referencesXu, W., Horsfield, A.P., Wearing, D., Lee, P.D., First-principles calculation of Mg/MgO interfacial free energies (2015) J Alloys Compd, 650, pp. 228-238
dc.relation.referencesKoverga, A.A., Flórez, E., Jimenez-Orozco, C., Rodriguez, J.A., Not all platinum surfaces are the same: effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction (2021) Electrochim Acta, 368, p. 137598
dc.relation.referencesYan, K., Kim, S.K., Khorshidi, A., Guduru, P.R., Peterson, A.A., High elastic strain directly tunes the hydrogen evolution reaction on tungsten carbide (2017) J Phys Chem C, 121, pp. 6177-6183
dc.relation.referencesYan, K., Maark, T.A., Khorshidi, A., Sethuraman, V.A., Peterson, A.A., Guduru, P.R., The influence of elastic strain on catalytic activity in the hydrogen evolution reaction (2016) Angew Chem, 128, pp. 6283-6289
dc.relation.referencesVasić, D.D., Pašti, I.A., Mentus, S.V., DFT study of platinum and palladium overlayers on tungsten carbide: structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction (2013) Int J Hydrogen Energy, 38, pp. 5009-5018
dc.relation.referencesKitchin, J.R., Nørskov, J.K., Barteau, M.A., Chen, J.G., Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces (2004) Phys Rev Lett, 93, p. 156801
dc.relation.referencesPosada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces (2015) J Chem Phys, 143, p. 114704
dc.relation.referencesHammer, B., Nørskov, J.K., Electronic factors determining the reactivity of metal surfaces (1995) Surf Sci, 343, pp. 211-220
dc.relation.referencesNorskov, J.K., Abild-Pedersen, F., Studt, F., Bligaard, T., Density functional theory in surface chemistry and catalysis (2011) Proc Natl Acad Sci Unit States Am, 108, pp. 937-943
dc.relation.referencesLi, F., Han, G.-F., Noh, H.-J., Jeon, J.-P., Ahmad, I., Chen, S., Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis (2019) Nat Commun, 10, p. 4060
dc.relation.referencesChen, Z., Song, Y., Cai, J., Zheng, X., Han, D., Wu, Y., Tailoring the d-band centers enables Co 4 N nanosheets to Be highly active for hydrogen evolution catalysis (2018) Angew Chem, 130, pp. 5170-5174
dc.relation.referencesSchnur, S., Groß, A., Strain and coordination effects in the adsorption properties of early transition metals: a density-functional theory study (2010) Phys Rev B, 81
dc.relation.referencesLasia, A., Mechanism and kinetics of the hydrogen evolution reaction (2019) Int J Hydrogen Energy, 44, pp. 19484-19518
dc.relation.referencesDubouis, N., Grimaud, A., The hydrogen evolution reaction: from material to interfacial descriptors (2019) Chem Sci, 10, pp. 9165-9181
dc.relation.referencesZeradjanin, A.R., Polymeros, G., Toparli, C., Ledendecker, M., Hodnik, N., Erbe, A., What is the trigger for the hydrogen evolution reaction? – towards electrocatalysis beyond the Sabatier principle (2020) Phys Chem Chem Phys, 22, pp. 8768-8780
dc.relation.referencesBligaard, T., Nørskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., Sehested, J., The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis (2004) J Catal, 224, pp. 206-217
dc.relation.referencesEsposito, D.V., Hunt, S.T., Kimmel, Y.C., Chen, J.G., A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides (2012) J Am Chem Soc, 134, pp. 3025-3033
dc.relation.referencesSabatier, F., La catalyse en chimie organique (1920), Berauge Paris
dc.relation.referencesGreeley, J., Jaramillo, T.F., Bonde, J., Chorkendorff, I., Nørskov, J.K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution (2006) Nat Mater, 5, pp. 909-913
dc.relation.referencesSheng, W., Myint, M., Chen, J.G., Yan, Y., Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces (2013) Energy Environ Sci, 6, pp. 1509-1512
dc.relation.referencesHuang, H.-C., Zhao, Y., Wang, J., Li, J., Chen, J., Fu, Q., Rational design of an efficient descriptor for single-atom catalysts in the hydrogen evolution reaction (2020) J Mater Chem, 8, pp. 9202-9208
dc.relation.referencesBonde, J., Moses, P.G., Jaramillo, T.F., Nørskov, J.K., Chorkendorff, I., Hydrogen evolution on nano-particulate transition metal sulfides (2009) Faraday Discuss, 140, pp. 219-231
dc.relation.referencesMerki, D., Vrubel, H., Rovelli, L., Fierro, S., Hu, X., Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution (2012) Chem Sci, 3, pp. 2515-2525
dc.relation.referencesZheng, Y., Jiao, Y., Li, L.H., Xing, T., Chen, Y., Jaroniec, M., Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution (2014) ACS Nano, 8, pp. 5290-5296
dc.relation.referencesGokhale, A.A., Dumesic, J.A., Mavrikakis, M., Unpublished results
dc.relation.referencesAtkins, P.W., (1998) Physical chemistry, 485, pp. 925-942. , 6th ed. Oxford University Press Oxford
dc.relation.referencesTong, Y.J., Wu, S.Y., Chen, H.T., Adsorption and reaction of CO and H2O on WC(0001) surface: a first-principles investigation (2018) Appl Surf Sci, 428, pp. 579-585
dc.relation.referencesZheng, W., Chen, L., Ma, C., Density functional study of H2O adsorption and dissociation on WC(0001) (2014) Comput Theor Chem, 1039, pp. 75-80
dc.relation.referencesTrasatti, S., The electrode potential (1980) Comprehensive treatise of electrochemistry. Volume 1: double layer, pp. 45-83. , J.O.’M. Bokris B.E. Conway E. Yeager Springer Science + Business Media New York
dc.relation.referencesBockris, J.O., Pentland, N., The mechanism of hydrogen evolution at copper cathodes in aqueous solutions (1952) Trans Faraday Soc, 48, p. 833
dc.relation.referencesYates, J.L.R., Spikes, G.H., Jones, G., Platinum-carbide interactions: core-shells for catalytic use (2015) Phys Chem Chem Phys, 17, pp. 4250-4258
dc.relation.referencesGe, C., Jiang, P., Cui, W., Pu, Z., Xing, Z., Asiri, A.M., Shape-controllable synthesis of Mo2C nanostructures as hydrogen evolution reaction electrocatalysts with high activity (2014) Electrochim Acta, 134, pp. 182-186
dc.relation.referencesPhilipsen, P.H.T., Baerends, E.J., Cohesive energy of 3 d transition metals: density functional theory atomic and bulk calculations (1996) Phys Rev B, 54, pp. 5326-5333
dc.relation.referencesAmbrosetti, A., Silvestrelli, P.L., Cohesive properties of noble metals by van der Waals–corrected density functional theory: Au, Ag, and Cu as case studies (2016) Phys Rev B, 94
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem