Mostrar el registro sencillo del ítem

dc.contributor.authorRamirez-Muñoz A
dc.contributor.authorPérez S
dc.contributor.authorFlórez E
dc.contributor.authorAcelas N.
dc.date.accessioned2022-09-14T14:33:59Z
dc.date.available2022-09-14T14:33:59Z
dc.date.created2021
dc.identifier.issn22133437
dc.identifier.urihttp://hdl.handle.net/11407/7548
dc.descriptionThis work provides circular leveraging strategies for using water hyacinth (Eichhornia crassipes) (WH) in the removal and recovery of phosphorus (P) from aqueous solutions. This study also assesses the transformation of the adsorbed phosphorus into a high value-added product (apatite) and its potential as a soil amendment. The materials evaluated were recovered from WH calcination at temperatures ranging between 350 °C and 700 °C, which evidenced great amounts of Ca(OH)2, MgO, Al2O3, and Ca5(PO4)3OH. The material that evidenced highest P removal capabilities was CWH-650, which was produced from calcination at 650 °C; hence, it was used during the P adsorption process. The results showed that chemisorption is the limiting step in the adsorption process, with a maximum adsorption capacity determined by its adaptation to the Langmuir model at 21.21 mg P/g. Likewise, the study determined that the exchange of ligands followed by precipitation in the apatite formation process were the dominant mechanisms during the adsorption process. An additional calcination step conducted on the CWH-650 adsorbent previously used in the removal of P denoted an increase in the amount of apatite (up to 41.0%), as demonstrated through Fourier-transform infrared spectroscopy and X-ray diffraction analysis. Subsequently, this study concluded that the Ca- and P-enriched phases exhibited a higher solubility of P in 2% formic acid than in deionized water, which fostered the release of up to 60 mg P/g, indicating its potential use as a phosphate fertilizer and an acid-soil amendment. © 2021 Elsevier Ltdeng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85113713814&doi=10.1016%2fj.jece.2021.106225&partnerID=40&md5=a6c1cb5c4d615aa8a1e9d29d8fb5d2b3
dc.sourceJournal of Environmental Chemical Engineering
dc.titleRecovering phosphorus from aqueous solutions using water hyacinth (Eichhornia crassipes) toward sustainability through its transformation to apatite
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.jece.2021.106225
dc.subject.keywordAdsorptioneng
dc.subject.keywordHydroxyapatiteeng
dc.subject.keywordKineticseng
dc.subject.keywordPhosphoruseng
dc.subject.keywordWater hyacintheng
dc.subject.keywordAluminaeng
dc.subject.keywordAluminum oxideeng
dc.subject.keywordDeionized watereng
dc.subject.keywordEnzyme kineticseng
dc.subject.keywordFertilizerseng
dc.subject.keywordFourier transform infrared spectroscopyeng
dc.subject.keywordHydroxyapatiteeng
dc.subject.keywordKineticseng
dc.subject.keywordMagnesiaeng
dc.subject.keywordPhosphoruseng
dc.subject.keywordRecoveryeng
dc.subject.keywordSoilseng
dc.subject.keywordX ray powder diffractioneng
dc.subject.keywordAdsorption capacitieseng
dc.subject.keywordAdsorption processeng
dc.subject.keywordLimiting stepeng
dc.subject.keywordMgOeng
dc.subject.keywordOH$+-$eng
dc.subject.keywordP removaleng
dc.subject.keywordRemoval and recoverieseng
dc.subject.keywordSoil amendmenteng
dc.subject.keywordValue added productseng
dc.subject.keywordWater Hyacintheng
dc.subject.keywordAdsorptioneng
dc.relation.citationvolume9
dc.relation.citationissue5
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationRamirez-Muñoz, A., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationPérez, S., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationAcelas, N., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.relation.referencesYang, F., Sui, L., Tang, C., Li, J., Cheng, K., Xue, Q., Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances (2021) Sci. Total Environ., 768
dc.relation.referencesCordell, D., Drangert, J.O., White, S., The story of phosphorus: global food security and food for thought (2009) Glob. Environ. Chang., 19, pp. 292-305
dc.relation.referencesTran, N., Drogui, P., Blais, J.F., Mercier, G., Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment (2012) Sep. Purif. Technol., 95, pp. 16-25
dc.relation.referencesLi, R., Wang, J.J., Zhou, B., Awasthi, M.K., Ali, A., Zhang, Z., Lahori, A.H., Mahar, A., Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute (2016) Bioresour. Technol., 215, pp. 209-214
dc.relation.referencesCai, R., Wang, X., Ji, X., Peng, B., Tan, C., Huang, X., Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth (2017) J. Environ. Manag., 187, pp. 212-219
dc.relation.referencesZhao, Y., Li, Y., Yang, F., Critical review on soil phosphorus migration and transformation under freezing-thawing cycles and typical regulatory measurements (2021) Sci. Total Environ., 751
dc.relation.referencesYu, C., Wang, K., Tian, C., Yuan, Q., Aerobic granular sludge treating low-strength municipal wastewater: efficient carbon, nitrogen and phosphorus removal with hydrolysis-acidification pretreatment (2021) Sci. Total Environ., 792
dc.relation.referencesZou, J., Yu, F., Pan, J., Pan, B., Wu, S., Qian, M., Li, J., Rapid start-up of an aerobic granular sludge system for nitrogen and phosphorus removal through seeding chitosan-based sludge aggregates (2021) Sci. Total Environ., 762
dc.relation.referencesNguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V., Bui, X.T., Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): fixed-bed column study (2015) Sci. Total Environ., 523, pp. 40-49
dc.relation.referencesSalim, N.A.A., Fulazzaky, M.A., Puteh, M.H., Khamidun, M.H., Yusoff, A.R.M., Abdullah, N.H., Ahmad, N., Nuid, M., Adsorption of phosphate from aqueous solution onto iron-coated waste mussel shell: physicochemical characteristics, kinetic, and isotherm studies (2021) Biointerface Res. Appl. Chem., 11, pp. 12831-12842
dc.relation.referencesLiu, R., Chi, L., Wang, X., Sui, Y., Wang, Y., Arandiyan, H., Review of metal (hydr)oxide and other adsorptive materials for phosphate removal from water (2018) J. Environ. Chem. Eng., 6, pp. 5269-5286
dc.relation.referencesAcelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119, pp. 1353-1360
dc.relation.referencesAcelas, N.Y., Mejia, S.M., Mondragón, F., Flórez, E., Density functional theory characterization of phosphate and sulfate adsorption on Fe-(hydr)oxide: reactivity, pH effect, estimation of Gibbs free energies, and topological analysis of hydrogen bonds (2013) Comput. Theor. Chem., 1005, pp. 16-24
dc.relation.referencesWu, B., Wan, J., Zhang, Y., Pan, B., Lo, I.M.C., Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms (2020) Environ. Sci. Technol., 54, pp. 50-66
dc.relation.referencesJohansson Westholm, L., Substrates for phosphorus removal — potential benefits for on-site wastewater treatment? (2006) Water Res., 40, pp. 23-36
dc.relation.referencesJung, K.W., Hwang, M.J., Ahn, K.H., Ok, Y.S., Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media (2015) Int. J. Environ. Sci. Technol., 12, pp. 3363-3372
dc.relation.referencesPérez, S., Muñoz-Sadaña, J., Acelas, N., Flórez, E., Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: an approach to technology transfer (2021) J. Colloid Interface Sci., 587, pp. 767-779
dc.relation.referencesZeng, Z., Da Zhang, S., Li, T.Q., Zhao, F.L., He, Z.L., Zhao, H.P., Yang, X.E., Rafiq, M.T., Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants (2013) J. Zhejiang Univ. Sci. B, 14, pp. 1152-1161
dc.relation.referencesZheng, X., Ye, Y., Jiang, Z., Ying, Z., Ji, S., Chen, W., Wang, B., Dou, B., Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive (2020) Sci. Total Environ., 738
dc.relation.referencesMosa, A., El-ghamry, A., Tolba, M., Functionalized biochar derived from heavy metal rich feedstock: phosphate recovery and reusing the exhausted biochar as an enriched soil amendment (2018) Chemosphere, 198, pp. 351-363
dc.relation.referencesRamirez, A., Pérez, S., Acelas, N., Flórez, E., Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer (2021) J. Environ. Chem. Eng., 9
dc.relation.referencesBottezini, L., Dick, D.P., Wisniewski, A., Knicker, H., Carregosa, I.S.C., Phosphorus species and chemical composition of water hyacinth biochars produced at different pyrolysis temperature (2021) Bioresour. Technol. Rep., 14
dc.relation.referencesAlmanassra, I.W., Mckay, G., Kochkodan, V., Ali Atieh, M., Al-Ansari, T., A state of the art review on phosphate removal from water by biochars (2021) Chem. Eng. J., 409
dc.relation.referencesLiu, X., Shen, F., Qi, X., Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw (2019) Sci. Total Environ., 666, pp. 694-702
dc.relation.referencesKong, L., Ruan, Y., Zheng, Q., Su, M., Diao, Z., Chen, D., Hou, L., Shih, K., Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater (2020) J. Hazard. Mater., 382
dc.relation.referencesLiu, Y., Zhang, R., Sun, Z., Shen, Q., Li, Y., Wang, Y., Xia, S., Wang, X., Remediation of artificially contaminated soil and groundwater with copper using hydroxyapatite/calcium silicate hydrate recovered from phosphorus-rich wastewater (2021) Environ. Pollut., 272
dc.relation.referencesLi, Q., Zhong, H., Cao, Y., Effects of the joint application of phosphate rock, ferric nitrate and plant ash on the immobility of As, Pb and Cd in soils (2020) J. Environ. Manag., 265
dc.relation.referencesFihri, A., Len, C., Varma, R.S., Solhy, A., Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis (2017) Coord. Chem. Rev., 347, pp. 48-76
dc.relation.referencesLiu, Q., Fang, Z., Liu, Y., Liu, Y., Xu, Y., Ruan, X., Zhang, X., Cao, W., Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO (2019) Waste Manag., 87, pp. 71-77
dc.relation.referencesLi, C., Li, Y., Li, Q., Duan, J., Hou, J., Hou, Q., Ai, S., Yang, Y., Regenerable magnetic aminated lignin/Fe3O4/La(OH)3 adsorbents for the effective removal of phosphate and glyphosate (2021) Sci. Total Environ., 788
dc.relation.referencesShiba, N.C., Ntuli, F., Extraction and precipitation of phosphorus from sewage sludge (2017) Waste Manag., 60, pp. 191-200
dc.relation.referencesChen, B., Zhang, X., Chen, W., Wang, D., Song, N., Qian, G., Duan, X., Zhou, X., Tailoring of Fe/MnK-CNTs composite catalysts for the fischer-tropsch synthesis of lower olefins from syngas (2018) Ind. Eng. Chem. Res., 57, pp. 11554-11560
dc.relation.referencesLimousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Barthès, V., Krimissa, M., Sorption isotherms: a review on physical bases, modeling and measurement (2007) Appl. Geochem., 22, pp. 249-275
dc.relation.referencesNguyen, H., You, S., Hosseini-bandegharaei, A., Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review (2017) Water Res., 120, pp. 88-116
dc.relation.referencesRamirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., Removal of Cr(VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: kinetics, equilibrium, and density functional theory calculations (2020) J. Environ. Chem. Eng., 8
dc.relation.referencesZhang, X., Fu, W., Yin, Y., Chen, Z., Qiu, R., Simonnot, M.-O., Wang, X., Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: batch experiment, kinetic and mechanism studies (2018) Bioresour. Technol., 268, pp. 149-157
dc.relation.referencesMarshall, J.A., Morton, B.J., Muhlack, R., Chittleborough, D., Kwong, C.W., Recovery of phosphate from calcium-containing aqueous solution resulting from biochar-induced calcium phosphate precipitation (2017) J. Clean. Prod., 165, pp. 27-35
dc.relation.referencesTuriel, E., Perez-Conde, C., Martin-Esteban, A., Assessment of the cross-reactivity and binding sites characterisation of a propazine-imprinted polymer using the Langmuir-Freundlich isotherm (2003) Analyst, 128, pp. 137-141
dc.relation.referencesUmpleby, R.J., Baxter, S.C., Chen, Y., Shah, R.N., Shimizu, K.D., Characterization of molecularly imprinted polymers with the Langmuir–Freundlich isotherm (2001) Anal. Chem., 73, pp. 4584-4591
dc.relation.referencesWang, S., Kong, L., Long, J., Su, M., Diao, Z., Chang, X., Chen, D., Shih, K., Adsorption of phosphorus by calcium-flour biochar: isotherm, kinetic and transformation studies (2018) Chemosphere, 195, pp. 666-672
dc.relation.referencesMitrogiannis, D., Psychoyou, M., Baziotis, I., Inglezakis, V.J., Koukouzas, N., Tsoukalas, N., Palles, D., Markou, G., Removal of phosphate from aqueous solutions by adsorption onto Ca(OH) 2 treated natural clinoptilolite (2017) Chem. Eng. J., 320, pp. 510-522
dc.relation.referencesMarkou, G., Mitrogiannis, D., Inglezakis, V., Muylaert, K., Koukouzas, N., Tsoukalas, N., Kamitsos, E., Baziotis, I., Ca(OH)2 pre-treated bentonite for phosphorus removal and recovery from synthetic and real wastewater (2018) Clean Soil Air Water, 46
dc.relation.referencesZheng, Q., Yang, L., Song, D., Zhang, S., Wu, H., Li, S., Wang, X., High adsorption capacity of Mg–Al-modified biochar for phosphate and its potential for phosphate interception in soil (2020) Chemosphere, 259
dc.relation.referencesAlmanassra, I.W., Kochkodan, V., Subeh, M., Mckay, G., Atieh, M., Al-Ansari, T., Phosphate removal from synthetic and treated sewage effluent by carbide derive carbon (2020) J. Water Process Eng., 36
dc.relation.referencesLoganathan, P., Vigneswaran, S., Kandasamy, J., Bolan, N.S., Removal and recovery of phosphate from water using sorption (2014) Crit. Rev. Environ. Sci. Technol., 44, pp. 847-907
dc.relation.referencesHariani, P.L., Salni, S., Riyanti, F., Combination of CaCO3 and Ca(OH)2 as agents for treatment acid mine drainage (2017) MATEC Web Conf., 101, pp. 2-6
dc.relation.referencesBacelo, H., Pintor, A.M.A., Santos, S.C.R., Boaventura, R.A.R., Botelho, C.M.S., Performance and prospects of different adsorbents for phosphorus uptake and recovery from water (2020) Chem. Eng. J., 381
dc.relation.referencesŠtulajterová, R., Medvecký, Ľ., Effect of calcium ions on transformation brushite to hydroxyapatite in aqueous solutions (2008) Colloids Surf. A Physicochem. Eng. Asp., 316, pp. 104-109
dc.relation.referencesKong, L., Han, M., Shih, K., Su, M., Diao, Z., Long, J., Chen, D., Peng, Y., Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus (2018) Environ. Pollut., 233, pp. 698-705
dc.relation.referencesGu, S., Fu, B., Ahn, J.W., Fang, B., Mechanism for phosphorus removal from wastewater with fly ash of municipal solid waste incineration, Seoul, Korea (2021) J. Clean. Prod., 280
dc.relation.referencesBerzina-Cimdina, L., Borodajenko, N., Research of calcium phosphates using fourier transform infrared spectroscopy (2012) Infrared Spectrosc. Mater. Sci. Eng. Technol., pp. 123-148
dc.relation.referencesReig, F.B., Adelantado, J.V.G., Moreno, M.C.M.M., FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples (2002) Talanta, 58, pp. 811-821
dc.relation.referencesWilson, F., Tremain, P., Moghtaderi, B., Characterization of biochars derived from pyrolysis of biomass and calcium oxide mixtures (2018) Energy Fuels, 32, pp. 4167-4177
dc.relation.referencesGrumezescu, A.M., Ghitulica, C.D., Voicu, G., Huang, K.S., Yang, C.H., Ficai, A., Vasile, B.S., Chifiriuc, M.C., New silica nanostructure for the improved delivery of topical antibiotics used in the treatment of staphylococcal cutaneous infections (2014) Int. J. Pharm., 463, pp. 170-176
dc.relation.referencesAyodele, O.B., Lethesh, K.C., Gholami, Z., Uemura, Y., Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: kinetics and Arrhenius parameters (2016) J. Energy Chem., 25, pp. 158-168
dc.relation.referencesKong, L., Hu, X., Xie, Z., Ren, X., Long, J., Su, M., Diao, Z., Hou, L., Accelerated phosphorus recovery from aqueous solution onto decorated sewage sludge carbon (2018) Sci. Rep., 8, pp. 1-8
dc.relation.referencesJiang, D., Chu, B., Amano, Y., Machida, M., Removal and recovery of phosphate from water by Mg-laden biochar: batch and column studies (2018) Colloids Surf. A, 558, pp. 429-437
dc.relation.referencesPérez, S., Muñoz-Sadaña, J., Acelas, N., Flórez, E., Phosphate removal from aqueous solutions by heat treatment of eggshell and palm fiber (2021) J. Environ. Chem. Eng., 9
dc.relation.referencesChen, D., Szostak, P., Wei, Z., Xiao, R., Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate (2016) Sci. Total Environ., 539, pp. 381-387
dc.relation.referencesBlanco, I., Molle, P., Sáenz de Miera, L.E., Ansola, G., Basic oxygen furnace steel slag aggregates for phosphorus treatment: evaluation of its potential use as a substrate in constructed wetlands (2016) Water Res., 89, pp. 355-365
dc.relation.referencesYin, H., Yan, X., Gu, X., Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands (2017) Water Res., 115, pp. 329-338
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem