Mostrar el registro sencillo del ítem

dc.contributor.authorSomma R
dc.contributor.authorBlessent D
dc.contributor.authorRaymond J
dc.contributor.authorConstance M
dc.contributor.authorCotton L
dc.contributor.authorDe Natale G
dc.contributor.authorFedele A
dc.contributor.authorJurado M.J
dc.contributor.authorMarcia K
dc.contributor.authorMiranda M
dc.contributor.authorTroise C
dc.contributor.authorWiersberg T.
dc.date.accessioned2022-09-14T14:34:00Z
dc.date.available2022-09-14T14:34:00Z
dc.date.created2021
dc.identifier.issn19961073
dc.identifier.urihttp://hdl.handle.net/11407/7553
dc.descriptionUnconventional geothermal resource development can contribute to increase power generation from renewable energy sources in countries without conventional hydrothermal reservoirs, which are usually associated with magmatic activity and extensional faulting, as well as to expand the generation in those regions where conventional resources are already used. Three recent drilling experiences focused on the characterization of unconventional resources are described and compared: the Campi Flegrei Deep Drilling Project (CFDDP) in Italy, the United Downs Deep Geothermal Power (UDDGP) project in the United Kingdom, and the DEEP Earth Energy Production in Canada. The main aspects of each project are described (geology, drilling, data collection, communication strategies) and compared to discuss challenges encountered at the tree sites considered, including a scientific drilling project (CFDDP) and two industrial ones (UDDGP and DEEP). The first project, at the first stage of pilot hole, although not reaching deep supercritical targets, showed extremely high, very rare thermal gradients even at shallow depths. Although each project has its own history, as well as social and economic context, the lessons learned at each drilling site can be used to further facilitate geothermal energy development. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85108514269&doi=10.3390%2fen14113306&partnerID=40&md5=37073f9e0e1862f8317209ce37d8db18
dc.sourceEnergies
dc.titleReview of recent drilling projects in unconventional geothermal resources at campi flegrei caldera, cornubian batholith and williston sedimentary basin
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.3390/en14113306
dc.subject.keywordCalderaeng
dc.subject.keywordCommunitieseng
dc.subject.keywordEnhanced Geothermal Systemseng
dc.subject.keywordGeothermal drillingeng
dc.subject.keywordUnconventional geothermal resourceseng
dc.subject.keywordGeothermal fieldseng
dc.subject.keywordGeothermal power plantseng
dc.subject.keywordRenewable energy resourceseng
dc.subject.keywordResource valuationeng
dc.subject.keywordTrees (mathematics)eng
dc.subject.keywordCommunication strategyeng
dc.subject.keywordEnergy developmenteng
dc.subject.keywordEnergy productionseng
dc.subject.keywordExtensional faultingeng
dc.subject.keywordGeothermal resourceseng
dc.subject.keywordPower generation from renewableeng
dc.subject.keywordScientific drillingeng
dc.subject.keywordUnconventional resourceseng
dc.subject.keywordInfill drillingeng
dc.relation.citationvolume14
dc.relation.citationissue11
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationSomma, R., INGV‐Osservatorio Vesuviano, Naples, 80124, Italy, CNR‐IRISS, Naples, 80134, Italy
dc.affiliationBlessent, D., Programa Ingeniería Ambiental, Universidad de Medellín, Medellin, Antioquia, 590 4500, Colombia
dc.affiliationRaymond, J., Institut National de la Recherche Scientifique, 490 Couronne St., Quebec City, QC G1K 9A9, Canada
dc.affiliationConstance, M., GeoScience Limited Unit 1Falmouth Business Park, Bickland Water Road, Falmouth, TR11 4SZ, United Kingdom
dc.affiliationCotton, L., GeoScience Limited Unit 1Falmouth Business Park, Bickland Water Road, Falmouth, TR11 4SZ, United Kingdom
dc.affiliationDe Natale, G., INGV‐Osservatorio Vesuviano, Naples, 80124, Italy
dc.affiliationFedele, A., INGV‐Osservatorio Vesuviano, Naples, 80124, Italy
dc.affiliationJurado, M.J., Geosciences Barcelona CSIC, Barcelona, 08028, Spain
dc.affiliationMarcia, K., DEEP Earth Energy Production Corp, Box 6 Site 515 RR5, Saskatoon, SK S7K 3J8, Canada
dc.affiliationMiranda, M., Institut National de la Recherche Scientifique, 490 Couronne St., Quebec City, QC G1K 9A9, Canada
dc.affiliationTroise, C., INGV‐Osservatorio Vesuviano, Naples, 80124, Italy
dc.affiliationWiersberg, T., Helmholtz‐Zentrum Potsdam—Deutsches GeoForschungsZentrum GFZ, Potsdam, 14473, Germany
dc.relation.referencesSimmons, S.F., Geothermal Resources (2021) Encyclopedia of Geology, pp. 708-722. , 2nd ed.
dc.relation.referencesAlderton, D., Elias, S.A., Eds.
dc.relation.referencesElsevier: Amsterdam, The Netherlands, ISBN 978‐0‐08‐102909‐1
dc.relation.referencesSaemundsson, K., Axelsson, G., Steingrímsson, B., Geothermal systems in global perspective (2009) the UNU‐GTP and LaGeo Course on Surface Exploration for Geothermal Resources, , Presented at Santa Tecla/Ahuachapán, El Salvador, 17–30 October
dc.relation.referencesMoeck, I., Catalog of geothermal play types based on geologic controls (2014) Renew. Sustain. Energy Rev, 37, pp. 867-882
dc.relation.referencesKruszewski, M., Wittig, V., Review of failure modes in supercritical geothermal drilling projects (2018) Geotherm. Energy, 6, pp. 1-29
dc.relation.referencesFajar, A., Yamada, R., Uno, M., Okumura, S., Tsuchiya, N., Evaluation of Caldera Hosted Geothermal Potential during Volcan-ism and Magmatism in Subduction System, NE Japan (2019) Geofluids, 19, p. 14
dc.relation.referencesChiodi, A., Tassi, F., Báez, W., Filipovich, R., Bustos, E., Glok Galli, M., Suzaño, N., Giordano, G., Preliminary conceptual model of the Cerro Blanco caldera‐hosted geothermal system (Southern Puna, Argentina): Inferences from geochemical investigations (2019) J. South Am. Earth Sci, 94, p. 102213
dc.relation.referencesTsuchiya, N., Potential Candidates of Supercritical Geothermal Reservoir Proceedings of the Geothermal Resources Council 41st Annual Meeting—Geothermal Energy: Power To Do More (GRC 2017), pp. 1587-1598. , Salt Lake City, UT, USA, 1–4 October 2017
dc.relation.referencesGoff, F., Janik, C.J., (2000) Geothermal Systems, p. 1415. , Academic Press: Cambridge, MA, USA
dc.relation.referencesFriðleifsson, G.O., Elders, W.A., Zierenberg, R.A., Stefánsson, A., Fowler, A.P.G., Weisenberger, T.B., Harðarson, B.S., Mesfin, K.G., The Iceland Deep Drilling Project 4.5 km deep well, IDDP‐2, in the seawater‐recharged Reykjanes geothermal field in SW Iceland has successfully reached its supercritical target (2017) Sci. Drill, 23, pp. 1-12
dc.relation.referencesHarms, U., Emmermann, R., History and status of the international continental scientific drilling program (2007) Continental Scientific Drilling, pp. 1-52. , Harms, U., Koeberl, C., Zoback, M.D., Eds.
dc.relation.referencesSpringer: Berlin/Heidelberg, Germany, ISBN 978‐3‐540 68778‐8
dc.relation.referencesFranco, A., Vaccaro, M., Sustainable Sizing of Geothermal Power Plants: Appropriate Potential Assessment Methods (2020) Sustaina-bility, 12, p. 3844
dc.relation.referencesVolken, S., Xexakis, G., Trutnevyte, E., Perspectives of informed citizen panel on low‐carbon electricity portfolios in Switzerland and longer‐term evaluation of informational materials (2018) Env. Sci. Technol, 52, pp. 11478-11489
dc.relation.referencesHäring, M.O., Schanz, U., Ladner, F., Dyer, B.C., Characterisation of the Basel 1 enhanced geothermal system (2008) Geothermics, 37, pp. 469-495
dc.relation.referencesMalo, M., Malo, F., Bédard, K., Raymond, J., Public perception regarding deep geothermal energy and social acceptability in the province of Québec, Canada (2018) Geothermal Energy and Society, pp. 91-103. , Allansdottir, A., Manzella, A., Pellizzone, A., Eds.
dc.relation.referencesSpringer: Berlin/Heidelberg, Germany, ISBN 978‐3‐319‐78286‐7
dc.relation.referencesCarr‐Cornish, S., Romanach, L., Differences in Public Perceptions of Geothermal Energy Technology in Australia (2014) Energies, 7, pp. 1555-1575
dc.relation.referencesPellizzone, A., Allansdottir, A., De Franco, R., Muttoni, G., Manzella, A., Geothermal energy and the public: A case study on deliberative citizens’ engagement in central Italy (2017) Energy Policy, 101, pp. 561-570
dc.relation.referencesHuang, K.K., Hickson, C.J., Cotterill, D., Champollion, Y., Geothermal Assessment of Target Formations Using Recorded Temperature Measurements for the Alberta No. 1 Geothermal Project (2021) Appl. Sci, 11, p. 608
dc.relation.referencesRicther, A., ThinkGeoEnergy’s Top 10 Geothermal Countries 2020—Installed Power Generation Capacity (MWe), , https://www.thinkgeoenergy.com/thinkgeoenergys‐top‐10‐geothermal‐countries‐2020‐installed‐power-generation‐capacity‐mwe/, Thinkgeoen-ergy. (accessed on 10 February 2021)
dc.relation.referencesCarlino, S., Somma, R., Troise, C., De Natale, G., The geothermal exploration of Campanian volcanoes: Historical review and future development (2012) Renew. Sustain. Energy Rev, 16, pp. 1004-1030
dc.relation.referencesDe Natale, G., Troise, C., Mark, D., Mormone, A., Piochi, M., Di Vito, M.A., Isaia, R., Somma, R., The Campi Flegrei Deep Drilling Project (CFDDP): New insight on caldera structure, evolution and hazard implications for the Naples area (Southern Italy) (2016) Geochem. Geophys. Geosyst, 17, pp. 4836-4847
dc.relation.referencesDeino, A.L., Orsi, G., De Vita, S., Piochi, M., The age of the Neapolitan Yellow Tuff caldera‐forming eruption (Campi Flegrei caldera–Italy) assessed by 40 Ar/39 Ar dating method (2004) J. Volcanol. Geotherm. Res, 133, pp. 157-170
dc.relation.referencesRosi, M., Sbrana, A., Phlegrean fields (1987) Quaderni de la Ricerca Scientifica, 114, pp. 1-175. , Rosi, M., Sbrana, A., Eds.
dc.relation.referencesConsiglio Nazionale Ricerche: Rome, Italy
dc.relation.referencesOrsi, G., De Vita, S., Di Vito, M., The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and configuration (1996) J. Volcanol. Geotherm. Res, 74, pp. 179-214
dc.relation.referencesDe Natale, G., Troise, C., Somma, R., Invited perspectives: The volcanoes of Naples: How can the highest volcanic risk in the world be effectively mitigated? (2020) Nat. Hazards Earth Syst. Sci, pp. 2037-2053
dc.relation.referencesErzinger, J., Wiersberg, T., Zimmer, M., Real‐time mud gas logging and sampling during drilling (2006) Geofluids, 6, pp. 225-233
dc.relation.referencesErzinger, J., Wiersberg, T., Dahms, E., Real‐time mud gas logging during drilling of the SAFOD Pilot Hole in Parkfield, CA (2004) Geophys. Res. Lett, 31
dc.relation.referencesFedele, A., Pedone, M., Moretti, R., Wiersberg, T., Somma, R., Troise, C., De Natale, G., Real‐time quadrupole mass spectrometry of hydrothermal gases from the unstable Pisciarelli fumaroles (Campi Flegrei): Trends, challenges and processes (2017) Int. J. Mass Spectrom, 415, pp. 44-54
dc.relation.referencesErzinger, J., Kilburn, C.R.J., Sammonds, P.R., Gudmondsson, A., Fridleifsson, G.O., Troise, C., Drilling at Campi Flegrei Caldera (Southern Italy), , https://www.icdp‐online.org/index.php?id=2126&no_cache=1&label=ICDP‐2006/12, (ac-cessed on 14 February 2021)
dc.relation.referencesGoldberg, D., (2001) Well Logging for Physical Properties: A Handbook for Geophysicists, Geologists and Engineers, 82. , 2nd ed.
dc.relation.referencesEos Transactions American Geophysical Union: New York, NY, USA
dc.relation.referencesRider, M., Kennedy, M., (2018) The Geological Interpretation of Well Logs, , 3rd ed.
dc.relation.referencesRider‐French Consulting Limited: Sutherland, UK, ISBN 9780954190682
dc.relation.referencesSerra, O., (1984) Fundamentals of Well‐Log Interpretation: The Acquisition of Logging Data, , Elsevier: Amsterdam, The Netherlands, ISBN 9780444426208
dc.relation.referencesTang, L., Luo, L.Q., Lao, C., Wang, G., Wang, J., Huang, Y., Real time fluid analysis during drilling of the Wenchuan Earthquake Fault Scientific Drilling Project and its responding features (2014) Tectonophysics, 619, pp. 70-78
dc.relation.referencesD’antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., De Vita, S., Isaia, R., The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka (1999) J. Volcanol. Geotherm. Res, 91, pp. 247-268
dc.relation.referencesPabst, S., Wörner, G., Civetta, L., Tesoro, R., Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy) (2008) Bull. Volcanol, 70, pp. 961-976
dc.relation.referencesPiochi, M., Kilburn, C.R.J., Di Vito, M.A., Mormone, A., Tramelli, A., Troise, C., De Natale, G., The volcanic and geothermally active Campi Flegrei caldera: An integrated multidisciplinary image of its buried structure (2014) Int. J. Earth Sci, 103, pp. 401-421
dc.relation.referencesVinciguerra, S., Trovato, C., Benson, M., roise, C., Natale, G., Understanding the Seismic Velocity Structure of Campi Flegrei Caldera (Italy): From the Laboratory to the Field Scale (2006) Pure Appl. Geophys, 163, pp. 2205-2221. , T.
dc.relation.referencesD.e
dc.relation.referencesVanorio, T., Virieux, J., Capuano, P., Russo, G., Three‐dimensional seismic tomography from P wave and S wave microearth-quake travel times and rock physics characterization of the Campi Flegrei Caldera (2005) J. Geophys. Res, 110. , issn: 0148‐0227
dc.relation.referencesSacchi, M., De Natale, G., Spiess, V., Steinmann, L., Acocella, V., Corradino, M., de Silva, S., Geshi, N., A roadmap for amphibious drilling at the Campi Flegrei caldera: Insights from a MagellanPlus workshop (2019) Sci. Dril, 26, pp. 29-46
dc.relation.referencesSomma, R., Troise, C., Zeni, L., Minardo, A., Fedele, A., Mirabile, M., De Natale, G., Long‐Term Monitoring with Fiber Optics Distributed Temperature Sensing at Campi Flegrei: The Campi Flegrei Deep Drilling Project (2019) Sense, 19, p. 1009
dc.relation.referencesCotton, L., Gutmanis, J., Shail, R.K., Dalby, C., Batchelor, A., Foxford, A., Rollinson, G., Geological Overview of the United Downs Deep Geothermal Power Project, Cornwall, UK (2020) Proceedings of the World Geothermal Congress, , Reykjavik, Iceland
dc.relation.referencesDowning, R.A., Gray, D.A., (1986) Geothermal Energy the Potential in the United Kingdom, p. 187. , HMSO: Nottingham, UK
dc.relation.referencesFrancis, M.F., (1980) Investigation of the South West England Thermal Anomaly Zone, , Ph.D. Thesis, Imperial College, London, UK
dc.relation.referencesTammemagi, H.Y., Wheildon, J., Terrestrial heat flow and heat generation in the south‐west England (1974) Geophys. J. Int, 38, pp. 83-94
dc.relation.referencesTammemagi, H.Y., Wheildon, J., Further data on the South‐west England heat flow anomaly (1977) Geophys. J. Int, 49 (2), pp. 531-539
dc.relation.referencesSams, M.S., Thomas‐Betts, 3‐D numerical modelling of the conductive heat flow of SW England (1988) Geophys J, 92, pp. 323-334
dc.relation.referencesParker, R.H., (1989) Hot Dry Rock Geothermal Energy. Phase 2B Final Report of the Camborne School of Mines Project, , Pergamon Press: Oxford, UK
dc.relation.referencesMacDonald, P., Stedman, A., Symons, G., The UK geothermal hot dry rock R &D programme (1992) Proceedings of the Seventeenth Workshop on Geothermal Reservoir Engineering, , Stanford University, Stanford, CA, USA, 22–24 January
dc.relation.referencesEvans, C.D.R., (1990) The Geology of the Western English Channel and Its Western Approaches, , British Geological Survey
dc.relation.referencesHMSO: London, UK
dc.relation.referencesChen, Y., Clark, A., Farrar, E., Wasteneys, H., Hodgson, M., Bromley, A., Diachronous and independent histories of plutonism and mineralization in the Cornubian Batholith, southwest England (1993) J. Geol. Soc. Lond, 150, pp. 1183-1191
dc.relation.referencesBeamish, B., Busby, J., The Cornubian geothermal province: Heat production and flow in SW England estimates from boreholes and airborne gamma‐ray measurements (2016) Geotherm. Energy, 4, p. 4
dc.relation.referencesAirborne Geophysical Data WMS, , https://www.bgs.ac.uk/technolo-gies/web‐map‐services‐wms/tellussw‐airborne‐geophysical‐data‐wms/, British Geological Survey TellusSW. (accessed on 17 February 2021)
dc.relation.referenceshttps://geothermalengineering.co.uk/united‐downs/, United Downs Deep Geothermal Power Project. (ac-cessed on 20 February 2021)
dc.relation.referencesLedingham, P., Cotton, L., Law, R., The United Downs Deep Geothermal Power project (2019) Proceedings of the 44th Workshop on Geothermal Reservoir Engineering, , Stanford University, Stanford, CA, USA, 11–13 February
dc.relation.referencesLeveridge, B.E., Holder, M.T., Goode, A.J. J., Geology of the country around Falmouth (1990) Memoir of the British Geological Survey, , England and Wales: Nottingham, UK, Sheet 352
dc.relation.referencesSimons, B.J., Shail, R.K., Anderson, J., The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith. Lower plate post‐collisional peraluminous magmatism in the Rhenohercynian Zone of SW England (2016) Lithos, 260, pp. 76-90
dc.relation.referencesSouther, J.G., Geothermal power, the Canadian potential (1976) Geosci. Can, 3, pp. 14-20
dc.relation.referencesThompson, A., Geothermal development in Canada: Country update (2010) Proceedings of the World Geothermal Congress, , Bali, Indonesia, 25–29 April
dc.relation.referencesJessop, A.M., Geothermal energy in Canada (1998) Geosci. Can, 25, pp. 33-41
dc.relation.referencesJessop, A., (2008) Review of National Geothermal Energy Program Phase 2—Geothermal Potential of the Cordillera, , (Report No.: Open File 5906)
dc.relation.referencesNatural Resources Canada: Ottawa, Canada
dc.relation.referenceshttps://deepcorp.ca/gallery/, DEEP Earth Energy Production Corp. (accessed on 15 February 2021)
dc.relation.referencesGeoscout Data Base, , https://www.geologic.com/products/, (license required for access). (accessed on 22 February 2021)
dc.relation.referenceshttp://demo.istat.it/popres/index.php?anno=2020&lingua=ita, Geo Demo ISTAT. (accessed on 20 February 2021)
dc.relation.referenceshttps://www.plumplot.co.uk/Cornwall‐population.html, Cornwall Population Statistics. (accessed on 20 February 2021)
dc.relation.referencesPopulation and Demography Statistics, , https://www.statcan.gc.ca/eng/subjects‐start/population_and_demog-raphy, (accessed on 20 February 2021)
dc.relation.referencesTaylor, K., (2021) Electricity, Heat and Lithium: Geothermal Offers New Hope for Old Mining County, , https://www.euractiv.com/section/energy/news/electricity‐heat‐and‐lithium‐geothermal‐offers‐new‐hopes‐for‐old‐mining-county/, (accessed on 25 February 2021)
dc.relation.referencesKruszewski, M., IDDP‐2 Well: A Significant Milestone for the Geothermal Industry, , https://www.geoener-gymarketing.com/tag/criticaltemperatures/, (accessed on 25 February 2021)
dc.relation.referencesGérard, A., Genter, A., Kohl, T., Lutz, P., Rose, P., Rummel, F., The deep EGS (Enhanced Geothermal System) project at Soultz-sous‐Forêts (Alsace, France) (2006) Geothermics, 35, pp. 473-483
dc.relation.referencesDouziech, M., Ravier, G., Perez Lopez, P., Blanc, I., Environmental impacts of geothermal, natural gas and biomass used for heat generation at a starch plant Proceedings of the 1st Geoscience & Engineering in Energy Transition Conference, , Strasbourg, France, 16–18 November 2020
dc.relation.referencesRichter, A., (2018) The 17.5 MW Velika Ciglena Geothermal Power Plant Starts Operation in Croatia, , https://www.thinkgeoenergy.com/the‐17‐5‐mw‐velika‐ciglena‐geothermal‐power‐plant‐starts‐operation‐in‐croatia/, (accessed on 25 April 2021)
dc.relation.referencesSanjuan, B., Négrel, G., Le Lous, M., Poulmarch, E., Gal, F., Damy, P.C., Main geochemical characteristics of the deep geothermal brine at Vendenheim (Alsace, France) with constraints on temperature and fluid circulation Proceedings of the World Geothermal Congress, , Reykjavik, Iceland, 24–27 October 2020
dc.relation.referencesEhkirch, V., Après Les Séismes En Alsace, Menace Sur La Géothermie, , https://lexpansion.lexpress.fr/actualite-economique/apres‐les‐seismes‐en‐alsace‐menace‐sur‐la‐geothermie_2142307.html, (accessed on 25 February 2021)
dc.relation.referencesWang, K., Yuan, B., Jia, G., Wua, X., A comprehensive review of geothermal energy extraction and utilization in oilfields (2018) J. Petrol. Sci. Eng, 168, pp. 465-477
dc.relation.referencesVan Horn, A., Amaya, A., Higgins, B., Muir, J., Scherer, J., Pilk, R., Ross, M., New Opportunities and Applications for Closed‐ Loop Geothermal Energy Systems (2020) Grc Trans, 44, pp. 1123-1143
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem