dc.contributor.author | Tobón P | |
dc.contributor.author | Gómez S | |
dc.contributor.author | Restrepo A | |
dc.contributor.author | Núñez-Zarur F. | |
dc.date.accessioned | 2022-09-14T14:34:01Z | |
dc.date.available | 2022-09-14T14:34:01Z | |
dc.date.created | 2021 | |
dc.identifier.issn | 2767333 | |
dc.identifier.uri | http://hdl.handle.net/11407/7556 | |
dc.description | Quantum mechanical calculations on the mechanism of olefin metathesis with a variety of substituents mediated by a Ru alkylidene catalyst reveal multistep processes along the general reactants → adduct → coordination complex → metallacycle → decoordination complex → products pathway for two consecutive turnovers. Net energy barriers in solution do not exceed 12 kcal mol-1 during the [Ru]=CHPh + R1R2C=CH2 → [Ru] =CR1R2 + H2C=CHPh first turnover and 20 kcal mol-1 during the [Ru] =CR1R2 + R1R2C=CH2 → [Ru]=CH2 + R1R2C=CR1R2 second turnover. The complex series of steps is initially driven by the evolution of the Ru(catalyst)···C(olefin) contact. Dissection of bonding interactions using the tools provided by the natural bond orbitals and by the quantum theory of atoms in molecules methods indicate that each contact in the Ru(catalyst)···C(catalyst)···C(olefin)···C(olefin)···Ru(catalyst) cyclic reactive center undergoes the following series of transformations in different orders: no interaction → long range → σ → → π. Every single contact in this reactive center gains/loses an entire σ bond during the ···TS → metallacycle → TS··· interval. The lowest point in the potential energy surface is usually the metallacycle. For the first turnover, cycloreversion and final elimination of the products exhibit late transition states leading to higher relative energy barriers. Conversely, for the second turnover, it is the metallacycle to decoordination complex transformation step which leads to the highest barriers, constituting the rate-determining step for the entire process. Each step of the reaction is best described as a highly asynchronous process. Electron-withdrawing groups exhibit the largest overall barriers by virtue of destabilizing the emerging πbond in the final R1R2C=CR1R2 olefin during the second turnover. © | eng |
dc.language.iso | eng | |
dc.publisher | American Chemical Society | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100148570&doi=10.1021%2facs.organomet.0c00482&partnerID=40&md5=b9dba219b8c29fa953c7098a1494d6f0 | |
dc.source | Organometallics | |
dc.title | Role of Substrate Substituents in Alkene Metathesis Mediated by a Ru Alkylidene Catalyst | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1021/acs.organomet.0c00482 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Tobón, P., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 50010, Colombia | |
dc.affiliation | Gómez, S., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy | |
dc.affiliation | Restrepo, A., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 50010, Colombia | |
dc.affiliation | Núñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia | |
dc.relation.references | (2015) Handbook of Metathesis, pp. I-XVII. , John Wiley & Sons, Ltd | |
dc.relation.references | Jean-Louis Hérisson, P., Chauvin, Y., Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques (1971) Die Makromolekulare Chem., 141, pp. 161-176 | |
dc.relation.references | Trnka, T.M., Grubbs, R.H., The Development of L2X2RuCHR Olefin Metathesis Catalysts: An Organometallic Success Story (2001) Acc. Chem. Res., 34, pp. 18-29 | |
dc.relation.references | Vougioukalakis, G.C., Grubbs, R.H., Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts (2010) Chem. Rev., 110, pp. 1746-1787 | |
dc.relation.references | Ogba, O.M., Warner, N.C., O'Leary, D.J., Grubbs, R.H., Recent advances in ruthenium-based olefin metathesis (2018) Chem. Soc. Rev., 47, pp. 4510-4544 | |
dc.relation.references | Samojłowicz, C., Bieniek, M., Grela, K., Ruthenium-Based Olefin Metathesis Catalysts Bearing N-Heterocyclic Carbene Ligands (2009) Chem. Rev., 109, pp. 3708-3742 | |
dc.relation.references | Nolan, S.P., Clavier, H., Chemoselective olefin metathesis transformations mediated by ruthenium complexes (2010) Chem. Soc. Rev., 39, pp. 3305-3316 | |
dc.relation.references | Grubbs, R.H., Olefin metathesis (2004) Tetrahedron, 60, pp. 7117-7140 | |
dc.relation.references | Colacino, E., Martinez, J., Lamaty, F., Preparation of NHC-ruthenium complexes and their catalytic activity in metathesis reaction (2007) Coord. Chem. Rev., 251, pp. 726-764 | |
dc.relation.references | Lozano-Vila, A.M., Monsaert, S., Bajek, A., Verpoort, F., Ruthenium-Based Olefin Metathesis Catalysts Derived from Alkynes (2010) Chem. Rev., 110, pp. 4865-4909 | |
dc.relation.references | Monsaert, S., Lozano Vila, A., Drozdzak, R., Van Der Voort, P., Verpoort, F., Latent olefin metathesis catalysts (2009) Chem. Soc. Rev., 38, pp. 3360-3372 | |
dc.relation.references | Schrock, R.R., Hoveyda, A.H., Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts (2003) Angew. Chem., Int. Ed., 42, pp. 4592-4633 | |
dc.relation.references | Schrock, R.R., Recent Advances in High Oxidation State Mo and W Imido Alkylidene Chemistry (2009) Chem. Rev., 109, pp. 3211-3226 | |
dc.relation.references | Benedikter, M.J., Ziegler, F., Groos, J., Hauser, P.M., Schowner, R., Buchmeiser, M.R., Group 6 metal alkylidene and alkylidyne N-heterocyclic carbene complexes for olefin and alkyne metathesis (2020) Coord. Chem. Rev., 415, p. 213315 | |
dc.relation.references | Dias, E.L., Nguyen, S.T., Grubbs, R.H., Well-Defined Ruthenium Olefin Metathesis Catalysts: Mechanism and Activity (1997) J. Am. Chem. Soc., 119, pp. 3887-3897 | |
dc.relation.references | Hinderling, C., Adlhart, C., Chen, P., Olefin Metathesis of a Ruthenium Carbene Complex by Electrospray Ionization in the Gas Phase (1998) Angew Chem., Int. Ed., 37, pp. 2685-2689 | |
dc.relation.references | Adlhart, C., Hinderling, C., Baumann, H., Chen, P., Mechanistic Studies of Olefin Metathesis by Ruthenium Carbene Complexes Using Electrospray Ionization Tandem Mass Spectrometry (2000) J. Am. Chem. Soc., 122, pp. 8204-8214 | |
dc.relation.references | Sanford, M.S., Ulman, M., Grubbs, R.H., New Insights into the Mechanism of Ruthenium-Catalyzed Olefin Metathesis Reactions (2001) J. Am. Chem. Soc., 123, pp. 749-750 | |
dc.relation.references | Sanford, M.S., Love, J.A., Grubbs, R.H., Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts (2001) J. Am. Chem. Soc., 123, pp. 6543-6554 | |
dc.relation.references | Vorfalt, T., Wannowius, K.-J., Plenio, H., Probing the Mechanism of Olefin Metathesis in Grubbs-Hoveyda and Grela Type Complexes (2010) Angew. Chem., Int. Ed., 49, pp. 5533-5536 | |
dc.relation.references | Thiel, V., Hendann, M., Wannowius, K.-J., Plenio, H., On the Mechanism of the Initiation Reaction in Grubbs-Hoveyda Complexes (2012) J. Am. Chem. Soc., 134, pp. 1104-1114 | |
dc.relation.references | Ashworth, I.W., Hillier, I.H., Nelson, D.J., Percy, J.M., Vincent, M.A., Olefin Metathesis by Grubbs-Hoveyda Complexes: Computational and Experimental Studies of the Mechanism and Substrate-Dependent Kinetics (2013) ACS Catal., 3, pp. 1929-1939 | |
dc.relation.references | Credendino, R., Poater, A., Ragone, F., Cavallo, L., A computational perspective of olefins metathesis catalyzed by N-heterocyclic carbene ruthenium (pre)catalysts (2011) Catal. Sci. Technol., 1, pp. 1287-1297 | |
dc.relation.references | Du Toit, J.I., Van Sittert, C.G.C.E., Vosloo, H.C.M., Metal carbenes in homogeneous alkene metathesis: Computational investigations (2013) J. Organomet. Chem., 738, pp. 76-91 | |
dc.relation.references | Liu, P., Taylor, B.L.H., Garcia-Lopez, J., Houk, K.N., (2015) Handbook of Metathesis, pp. 199-252. , John Wiley & Sons, Ltd, chapter 7 | |
dc.relation.references | Engle, K.M., Lu, G., Luo, S.-X., Henling, L.M., Takase, M.K., Liu, P., Houk, K.N., Grubbs, R.H., Origins of Initiation Rate Differences in Ruthenium Olefin Metathesis Catalysts Containing Chelating Benzylidenes (2015) J. Am. Chem. Soc., 137, pp. 5782-5792 | |
dc.relation.references | Nuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Sodupe, M., Differences in the Activation Processes of Phosphine-Containing and Grubbs-Hoveyda-Type Alkene Metathesis Catalysts (2012) Organometallics, 31, pp. 4203-4215 | |
dc.relation.references | Cavallo, L., Mechanism of ruthenium-catalyzed olefin metathesis reactions from a theoretical perspective (2002) J. Am. Chem. Soc., 124, pp. 8965-8973 | |
dc.relation.references | Ashworth, I.W., Hillier, I.H., Nelson, D.J., Percy, J.M., Vincent, M.A., What is the initiation step of the Grubbs-Hoveyda olefin metathesis catalyst? (2011) Chem. Commun., 47, pp. 5428-5430 | |
dc.relation.references | Adlhart, C., Chen, P., Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts: The Role of Ligands and Substrates from a Theoretical Perspective (2004) J. Am. Chem. Soc., 126, pp. 3496-3510 | |
dc.relation.references | Weskamp, T., Schattenmann, W.C., Spiegler, M., Herrmann, W.A., A Novel Class of Ruthenium Catalysts for Olefin Metathesis (1998) Angew. Chem., Int. Ed., 37, pp. 2490-2493 | |
dc.relation.references | Torker, S., Merki, D., Chen, P., Gas-Phase Thermochemistry of Ruthenium Carbene Metathesis Catalysts (2008) J. Am. Chem. Soc., 130, pp. 4808-4814 | |
dc.relation.references | Solans-Monfort, X., Pleixats, R., Sodupe, M., DFT Mechanistic Study on Diene Metathesis Catalyzed by Ru-Based Grubbs-Hoveyda-Type Carbenes: The Key Role of π-Electron Density Delocalization in the Hoveyda Ligand (2010) Chem. - Eur J., 16, pp. 7331-7343 | |
dc.relation.references | Nuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Pleixats, R., Sodupe, M., Mechanistic Insights into Ring-Closing Enyne Metathesis with the Second-Generation Grubbs-Hoveyda Catalyst: A DFT Study (2011) Chem. - Eur J., 17, pp. 7506-7520 | |
dc.relation.references | Nuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Sodupe, M., Exo/endo Selectivity of the Ring-Closing Enyne Methathesis Catalyzed by Second Generation Ru-Based Catalysts. Influence of Reactant Substituents (2013) ACS Catal., 3, pp. 206-218 | |
dc.relation.references | Straub, B.F., Ligand Influence on Metathesis Activity of Ruthenium Carbene Catalysts: A DFT Study (2007) Adv. Synth. Catal., 349, pp. 204-214 | |
dc.relation.references | Correa, A., Cavallo, L., The Elusive Mechanism of Olefin Metathesis Promoted by (NHC)Ru-Based Catalysts: A Trade between Steric, Electronic, and Solvent Effects (2006) J. Am. Chem. Soc., 128, pp. 13352-13353 | |
dc.relation.references | Liu, P., Xu, X., Dong, X., Keitz, B.K., Herbert, M.B., Grubbs, R.H., Houk, K.N., Z-Selectivity in Olefin Metathesis with Chelated Ru Catalysts: Computational Studies of Mechanism and Selectivity (2012) J. Am. Chem. Soc., 134, pp. 1464-1467 | |
dc.relation.references | Torker, S., Koh, M.J., Khan, R.K.M., Hoveyda, A.H., Regarding a Persisting Puzzle in Olefin Metathesis with Ru Complexes: Why are Transformations of Alkenes with a Small Substituent Z-Selective? (2016) Organometallics, 35, pp. 543-562 | |
dc.relation.references | Pump, E., Poater, A., Bahri-Laleh, N., Credendino, R., Serra, L., Scarano, V., Cavallo, L., Regio, stereo and chemoselectivity of 2nd generation Grubbs ruthenium-catalyzed olefin metathesis (2020) Catal. Today | |
dc.relation.references | Van Rensburg, W.J., Steynberg, P.J., Meyer, W.H., Kirk, M.M., Forman, G.S., DFT Prediction and Experimental Observation of Substrate-Induced Catalyst Decomposition in Ruthenium-Catalyzed Olefin Metathesis (2004) J. Am. Chem. Soc., 126, pp. 14332-14333 | |
dc.relation.references | Van Rensburg, W.J., Steynberg, P.J., Kirk, M.M., Meyer, W.H., Forman, G.S., Mechanistic comparison of ruthenium olefin metathesis catalysts: DFT insight into relative reactivity and decomposition behavior (2006) J. Organomet. Chem., 691, pp. 5312-5325 | |
dc.relation.references | Mathew, J., Koga, N., Suresh, C.H., C-H Bond Activation through σ-Bond Metathesis and Agostic Interactions: Deactivation Pathway of a Grubbs Second-Generation Catalyst (2008) Organometallics, 27, pp. 4666-4670 | |
dc.relation.references | Poater, A., Cavallo, L., Mechanistic insights into the double C-H (de)activation route of a Ru-based olefin metathesis catalyst (2010) J. Mol. Catal. A: Chem., 324, pp. 75-79 | |
dc.relation.references | Poater, A., Ragone, F., Correa, A., Cavallo, L., Exploring the Reactivity of Ru-Based Metathesis Catalysts with a π-Acid Ligand Trans to the Ru-Ylidene Bond (2009) J. Am. Chem. Soc., 131, pp. 9000-9006 | |
dc.relation.references | Jawiczuk, M., Młodzikowska-Pieńko, K., Trzaskowski, B., Impact of the olefin structure on the catalytic cycle and decomposition rates of Hoveyda-Grubbs metathesis catalysts (2020) Phys. Chem. Chem. Phys., 22, pp. 13062-13069 | |
dc.relation.references | Núñez-Zarur, F., Solans-Monfort, X., Pleixats, R., Rodríguez-Santiago, L., Sodupe, M., DFT Study on the Recovery of Hoveyda-Grubbs-Type Catalyst Precursors in Enyne and Diene Ring-Closing Metathesis (2013) Chem. - Eur J., 19, pp. 14553-14565 | |
dc.relation.references | Chatterjee, A.K., Choi, T.-L., Sanders, D.P., Grubbs, R.H., A General Model for Selectivity in Olefin Cross Metathesis (2003) J. Am. Chem. Soc., 125, pp. 11360-11370 | |
dc.relation.references | Fomine, S., Tlenkopatchev, M.A., Computational modeling of renewable molecules. Ruthenium alkylidene-mediated metathesis of trialkyl-substituted olefins (2010) Organometallics, 29, pp. 1580-1587 | |
dc.relation.references | Fomine, S., Ortega, J.V., Tlenkopatchev, M.A., Computational modeling of ruthenium alkylidene mediated olefin metathesis: A DFT study of reaction pathways for the ring-opening cross-metathesis of norbornene with olefins (2005) J. Mol. Catal. A: Chem., 236, pp. 156-161 | |
dc.relation.references | Fomine, S., Ortega, J.V., Tlenkopatchev, M.A., Density Functional Theory Study of Ruthenium Alkylidene Mediated Cross-Metathesis Reaction Pathways between Cycloolefins and Halogenated Olefins (2005) Organometallics, 24, pp. 5696-5701 | |
dc.relation.references | Fomine, S., Ortega, J.V., Tlenkopatchev, M.A., Difluoroethylene as a chain transfer agent during ring-opening metathesis polymerization (ROMP) of norbornene by a ruthenium alkylidene complex: A computational study (2006) J. Organomet. Chem., 691, pp. 3343-3348 | |
dc.relation.references | Fomine, S., Ortega, J.V., Tlenkopatchev, M.A., Metathesis of halogenated olefins: A computational study of ruthenium alkylidene mediated reaction pathways (2007) J. Mol. Catal. A: Chem., 263, pp. 121-127 | |
dc.relation.references | Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Petersson, G.A., (2009) Gaussian 09, , Revision E.01 | |
dc.relation.references | Gaussian Inc. Wallingford CT | |
dc.relation.references | Bergner, A., Dolg, M., Küchle, W., Stoll, H., Preuss, H., Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 (1993) Mol. Phys., 80, pp. 1431-1441 | |
dc.relation.references | Küchle, W., Dolg, M., Stoll, H., Preuss, H., Ab initiopseudopotentials for Hg through Rn (1991) Mol. Phys., 74, pp. 1245-1263 | |
dc.relation.references | Ehlers, A.W., Böhme, M., Dapprich, S., Gobbi, A., Höllwarth, A., Jonas, V., Köhler, K.F., Frenking, G., A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc-Cu, Y-Ag and La-Au (1993) Chem. Phys. Lett., 208, pp. 111-114 | |
dc.relation.references | Grimme, S., Ehrlich, S., Goerigk, L., Effect of the damping function in dispersion corrected density functional theory (2011) J. Comput. Chem., 32, pp. 1456-1465 | |
dc.relation.references | Núñez-Zarur, F., Solans-Monfort, X., Restrepo, A., Mechanistic Insights into Alkane Metathesis Catalyzed by Silica-Supported Tantalum Hydrides: A DFT Study (2017) Inorg. Chem., 56, pp. 10458-10473 | |
dc.relation.references | Keith, T., (2019) AIMALL, , aim.tkgristmill.com, version 19.10.12 | |
dc.relation.references | TK Gristmill Software, Overland Park KS, USA | |
dc.relation.references | Bader, R., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press: Oxford | |
dc.relation.references | Bader, R.F.W., A quantum theory of molecular structure and its applications (1991) Chem. Rev., 91, pp. 893-928 | |
dc.relation.references | Bader, R.F.W., The Quantum Mechanical Basis of Conceptual Chemistry (2005) Monatsh. Chem., 136, pp. 819-854 | |
dc.relation.references | Popelier, P., On the full topology of the Laplacian of the electron density (2000) Coord. Chem. Rev., 197, pp. 169-189 | |
dc.relation.references | Popelier, P.L., (2000) Atoms in Molecules: An Introduction, , Prentice Hall: London | |
dc.relation.references | Weinhold, F., Landis, C.R., (2012) Discovering Chemistry with Natural Bond Orbitals, p. 319. , Wiley-VCH: Hoboken NJ | |
dc.relation.references | Glendening, E.D., Landis, C.R., Weinhold, F., Natural bond orbital methods (2012) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, pp. 1-42 | |
dc.relation.references | Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) NBO 6.0., , Theoretical Chemistry Institute, University of Wisconsin: Madison | |
dc.relation.references | Gómez, S., Guerra, D., López, J.G., Toro-Labbé, A., Restrepo, A., A Detailed Look at the Reaction Mechanisms of Substituted Carbenes with Water (2013) J. Phys. Chem. A, 117, pp. 1991-1999 | |
dc.relation.references | Rojas-Valencia, N., Ibargüen, C., Restrepo, A., Molecular interactions in the microsolvation of dimethylphosphate (2015) Chem. Phys. Lett., 635, pp. 301-305 | |
dc.relation.references | Gómez, S., Restrepo, A., Hadad, C.Z., Theoretical tools to distinguish O-ylides from O-ylidic complexes in carbene-solvent interactions (2015) Phys. Chem. Chem. Phys., 17, pp. 31917-31930 | |
dc.relation.references | Rojas-Valencia, N., Gómez, S., Montillo, S., Manrique-Moreno, M., Cappelli, C., Hadad, C., Restrepo, A., Evolution of Bonding during the Insertion of Anionic Ibuprofen into Model Cell Membranes (2020) J. Phys. Chem. B, 124, pp. 79-90 | |
dc.relation.references | Gómez, S., Osorio, E., Dzib, E., Islas, R., Restrepo, A., Merino, G., Revisiting the Rearrangement of Dewar Thiophenes (2020) Molecules, 25, p. 284 | |
dc.relation.references | Rojas-Valencia, N., Gómez, S., Guerra, D., Restrepo, A., A detailed look at the bonding interactions in the microsolvation of monoatomic cations (2020) Phys. Chem. Chem. Phys., 22, pp. 13049-13061 | |
dc.relation.references | Gómez, S., Ramírez-Malule, H., Cardona-G, W., Osorio, E., Restrepo, A., Double-Ring Epimerization in the Biosynthesis of Clavulanic Acid (2020) J. Phys. Chem. A, 124, pp. 9413-9426 | |
dc.relation.references | Giraldo, C., Gómez, S., Weinhold, F., Restrepo, A., Insight into the Mechanism of the Michael Reaction (2016) ChemPhysChem, 17, pp. 2022-2034 | |
dc.relation.references | Love, J.A., Sanford, M.S., Day, M.W., Grubbs, R.H., Synthesis, Structure, and Activity of Enhanced Initiators for Olefin Metathesis (2003) J. Am. Chem. Soc., 125, pp. 10103-10109 | |
dc.relation.references | Romero, P.E., Piers, W.E., Direct Observation of a 14-Electron Ruthenacyclobutane Relevant to Olefin Metathesis (2005) J. Am. Chem. Soc., 127, pp. 5032-5033 | |
dc.relation.references | Romero, P.E., Piers, W.E., Mechanistic Studies on 14-Electron Ruthenacyclobutanes: Degenerate Exchange with Free Ethylene (2007) J. Am. Chem. Soc., 129, pp. 1698-1704 | |
dc.relation.references | Benitez, D., Tkatchouk, E., Iii A. W., G.Iii, Relevance of cis- And trans-dichloride Ru intermediates in Grubbs-II olefin metathesis catalysis (H2IMesCl2Ru=CHR) (2008) Chem. Commun., pp. 6194-6196 | |
dc.relation.references | Paredes-Gil, K., Solans-Monfort, X., Rodriguez-Santiago, L., Sodupe, M., Jaque, P., DFT Study on the Relative Stabilities of Substituted Ruthenacyclobutane Intermediates Involved in Olefin Cross-Metathesis Reactions and Their Interconversion Pathways (2014) Organometallics, 33, pp. 6065-6075 | |
dc.relation.references | Trnka, T.M., Day, M.W., Grubbs, R.H., Olefin Metathesis with 1,1-Difluoroethylene (2001) Angew. Chem., Int. Ed., 40, pp. 3441-3444 | |
dc.relation.references | Macnaughtan, M.L., Johnson, M.J.A., Kampf, J.W., Synthesis, Structure, and Olefin Metathesis Activity of Two Ruthenium Monofluoromethylidene Complexes (2007) Organometallics, 26, pp. 780-782 | |
dc.relation.references | Macnaughtan, M.L., Johnson, M.J.A., Kampf, J.W., Olefin Metathesis Reactions with Vinyl Halides: Formation, Observation, Interception, and Fate of the Ruthenium-Monohalomethylidene Moiety (2007) J. Am. Chem. Soc., 129, pp. 7708-7709 | |
dc.relation.references | Imhof, S., Randl, S., Blechert, S., Ruthenium catalysed cross metathesis with fluorinated olefins (2001) Chem. Commun., pp. 1692-1693 | |
dc.relation.references | Love, J.A., Morgan, J.P., Trnka, T.M., Grubbs, R.H., A Practical and Highly Active Ruthenium-Based Catalyst that Effects the Cross Metathesis of Acrylonitrile (2002) Angew. Chem., Int. Ed., 41, pp. 4035-4037 | |
dc.relation.references | Chatterjee, A.K., Grubbs, R.H., Synthesis of Trisubstituted Alkenes via Olefin Cross-Metathesis (1999) Org. Lett., 1, pp. 1751-1753 | |
dc.relation.references | Chatterjee, A.K., Sanders, D.P., Grubbs, R.H., Synthesis of Symmetrical Trisubstituted Olefins by Cross Metathesis (2002) Org. Lett., 4, pp. 1939-1942 | |
dc.relation.references | Dewar, J., A review of the pi-complex theory (1951) Bull. Soc. Chim. Fr., 18, pp. C71-C79 | |
dc.relation.references | Chatt, J., Duncanson, L.A., 586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: Attempted preparation of acetylene complexes (1953) J. Chem. Soc., pp. 2939-2947 | |
dc.relation.references | Restrepo-Cossio, A.A., Cano, H., Marí, F., Gonzalez, C.A., Theoretical study of the mechanism of the Wittig reaction: Ab initio and MNDO-PM3 treatment of the reaction of unstabilized, semistabilized, and stabilized ylides with acetaldehyde (1997) Heteroat. Chem., 8, pp. 557-569 | |
dc.relation.references | Restrepo-Cossio, A.A., Gonzalez, C.A., Marí, F., Comparative ab Initio Treatment (Hartree-Fock, Density Functional Theory, MP2, and Quadratic Configuration Interactions) of the Cycloaddition of Phosphorus Ylides with Formaldehyde in the Gas Phase (1998) J. Phys. Chem. A, 102, pp. 6993-7000 | |
dc.relation.references | Robiette, R., Richardson, J., Aggarwal, V.K., Harvey, J.N., Reactivity and Selectivity in the Wittig Reaction: A Computational Study (2006) J. Am. Chem. Soc., 128, pp. 2394-2409 | |
dc.relation.references | Farfán, P., Gómez, S., Restrepo, A., On the origins of stereoselectivity in the Wittig reaction (2019) Chem. Phys. Lett., 728, pp. 153-155 | |
dc.relation.references | Farfán, P., Gómez, S., Restrepo, A., Dissection of the Mechanism of the Wittig Reaction (2019) J. Org. Chem., 84, pp. 14644-14658 | |
dc.relation.references | Hammond, G.S., A Correlation of Reaction Rates (1955) J. Am. Chem. Soc., 77, pp. 334-338 | |
dc.relation.references | Espinosa, E., Alkorta, I., Elguero, J., Molins, E., From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H···F-Y systems (2002) J. Chem. Phys., 117, pp. 5529-5542 | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |