Show simple item record

dc.contributor.authorPichel N
dc.contributor.authorLubarsky H
dc.contributor.authorAfkhami A
dc.contributor.authorBaldasso V
dc.contributor.authorBotero L
dc.contributor.authorSalazar J
dc.contributor.authorHincapie M
dc.contributor.authorByrne J.A
dc.contributor.authorFernandez-Ibañez P.
dc.date.accessioned2022-09-14T14:34:01Z
dc.date.available2022-09-14T14:34:01Z
dc.date.created2021
dc.identifier.issn22147144
dc.identifier.urihttp://hdl.handle.net/11407/7558
dc.descriptionThe relationship between turbidity (T) and ultraviolet C (UVC) disinfection is still not clearly understood, as well as no attention has been paid to the contribution of natural organic matter (NOM). The present work assessed the influence of particulate and NOM on the UVC disinfection efficiency in terms of E. coli and MS2 removal at bench collimated beam (CB) and flow-UVC systems, both in the laboratory and in the field (Colombia). The flow-UVC reactor was installed as part of a household water treatment (HWT) system consisting of filtration + UVC disinfection. Tests were performed according to the WHO standards using fine test dust, humic acid (HA), and MS2 and E. coli as microbiological indicators. CB results showed a significant decrease in the inactivation rate of MS2 in the presence of small concentrations of HA (3.5 mg/L), with killing dose increasing a 65%, vs. non-significant effects of turbidity in the range of 0–20 NTU. Following the same trend, in flow-UVC tests the inactivation efficiency of MS2 decreased solely in the presence of HA. At the same HA concentration and flow rate, an increase in turbidity of 17.6 NTU showed a negligible effect. Conversely, in the presence of HA, UVT254 dropped from 88.7% (0 mg/L HA) to 73.3%, reducing MS2 inactivation by 1–2 log-units. Finally, the HWT system could be classified as protective working at flow rates ≤5 L/min. However, in the presence of 3.5 mg/L HA (UVT254 < 75%), it presented a limited protection for viruses. © 2021 The Authorseng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85118677831&doi=10.1016%2fj.jwpe.2021.102400&partnerID=40&md5=060a06a35e6be0196b5c938f11a4194f
dc.sourceJournal of Water Process Engineering
dc.titleSafe drinking water for rural communities using a low-cost household system. Effects of water matrix and field testing
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1016/j.jwpe.2021.102400
dc.subject.keywordDrinking watereng
dc.subject.keywordHumic acideng
dc.subject.keywordMS2eng
dc.subject.keywordTurbidityeng
dc.subject.keywordUVC disinfectioneng
dc.relation.citationvolume44
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationPichel, N., Nanotechnology and Integrated BioEngineering Centre, School of Engineering, Ulster UniversityNorthern Ireland BT37 0QB, United Kingdom, Solar Energy Research Centre (CIESOL), Joint Centre University of Almeria-CIEMAT, Carretera de Sacramento s/n, Almeria, 14120, Spain, Department of Chemical Engineering, University of Almeria, Spain
dc.affiliationLubarsky, H., Nanotechnology and Integrated BioEngineering Centre, School of Engineering, Ulster UniversityNorthern Ireland BT37 0QB, United Kingdom
dc.affiliationAfkhami, A., Nanotechnology and Integrated BioEngineering Centre, School of Engineering, Ulster UniversityNorthern Ireland BT37 0QB, United Kingdom
dc.affiliationBaldasso, V., Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, Milan, 20133, Italy
dc.affiliationBotero, L., Faculty of Engineering, University of Medellin, Ctra. 87, 30-65, Medellin, 050026, Colombia
dc.affiliationSalazar, J., Faculty of Engineering, University of Medellin, Ctra. 87, 30-65, Medellin, 050026, Colombia
dc.affiliationHincapie, M., Faculty of Engineering, University of Medellin, Ctra. 87, 30-65, Medellin, 050026, Colombia
dc.affiliationByrne, J.A., Nanotechnology and Integrated BioEngineering Centre, School of Engineering, Ulster UniversityNorthern Ireland BT37 0QB, United Kingdom
dc.affiliationFernandez-Ibañez, P., Nanotechnology and Integrated BioEngineering Centre, School of Engineering, Ulster UniversityNorthern Ireland BT37 0QB, United Kingdom
dc.relation.referencesHenry, V., Helbronner, A., de Recklinghausen, M., Stérilisation de grandes quantités d'eau par les rayons ultraviolets (1910) Compttes Rendus de l'Académie des Sciences, 150, p. 932
dc.relation.referencesWolfe, R.L., Ultraviolet disinfection of potable water (1990) Environ. Sci. Technol., 24 (6), pp. 768-773
dc.relation.referencesHoyer, O., Water disinfection with UV radiation—Requirements and realization (2003) Proceedings of the European Conference UV Karlsruhe, UV Radiation. Effects and Technologies, pp. 22-24. , (Karlsruhe)
dc.relation.referencesGadgil, A., Drinking water in developing countries (1998) Annu. Rev. Environ. Resour., 23, pp. 254-268
dc.relation.referencesNational Research Council, Drinking Water and Health (1980), 2. , The National Academies Press Washington, DC URL:
dc.relation.referencesChang, J.C.H., Ossoff, S.F., Lobe, D.C., Dorfman, M.H., Dumais, C.M., Qualls, R.G., Johnson, J.D., UV inactivation of pathogenic and indicator micro-organisms (1985) Appl. Environ. Microbiol., 49 (6), pp. 1361-1365
dc.relation.referencesButler, R.C., Lund, V., Carlson, D.A., Susceptibility of Campylobacter jejuni and Yersinia enterocolitica to UV radiation (1987) Appl. Environ. Microbiol., 53 (2), pp. 375-378
dc.relation.referencesHarris, D.G., Dean Adams, V.D., Sorensen, D.L., Curtis, M.S., Ultraviolet inactivation of selected bacteria and viruses with photo-reactivation of bacteria (1987) Water Res., 21 (6), pp. 687-692
dc.relation.referencesHavelar, A.H., Meulemans, C.C.E., Pot-Hogeboom, W.M., Koster, J., Inactivation of bacteriophage MS2 in wastewater effluent with monochromatic and polychromatic ultraviolet light (1990) Water Res., 24 (11), pp. 1387-1393
dc.relation.referencesWilson, B.R., Roessler, P.F., van Dellen, E., Abbaszadegan, M., Gerba, C.P., Coliphage MS2 as a UV water disinfection efficacy test surrogate for bacterial and viral pathogens (1992) Proceedings of the American Water Works Association Water Quality Technology Conference, November 15–19, Toronto, Canada
dc.relation.referencesSommer, R., Haider, T., Cabaj, A., Heidenreich, E., Kundi, M., Increased inactivation of Sacharomyces cerevisiae by protraction of UV irradiation (1996) Appl. Environ. Microbiol., 62 (6), pp. 1977-1983
dc.relation.referencesMeng, Q.S., Gerba, C.P., Comparative inactivation of enteric adenoviruses, poliovirus and coliphages by ultraviolet irradiation (1996) Water Res., 30 (11), pp. 2665-2668
dc.relation.referencesSommer, R., Haider, T., Cabaj, A., Pribil, W., Lhotsky, M., Time fluence reciprocity in UV disinfection of water (1998) Water Sci. Technol., 38 (12), pp. 145-150
dc.relation.referencesZimmer, J.L., Slawson, R.M., Potential repair of Esherichia coli DNA following exposure to UV radiation from both medium- and low-pressure UV sources used in drinking water treatment (2002) Appl. Environ. Microbiol., 68 (7), pp. 3293-3299
dc.relation.referencesMalley, J.P., Ballester, N.A., Margolin, A.B., Linden, K.G., Mofidi, A., Bolton, J.R., Crozes, G., Janex, M.L., Inactivation of Pathogens with Innovative UV Technologies (2004), American Research Foundation and American Water Works Association
dc.relation.referencesMamane-Gravetz, H., Linden, K.G., Cabaj, A., Sommer, R., Spectral sensitivity of Bacillus subtilis spores and MS2 coliphage for validation testing of ultraviolet reactors for water disinfection (2005) Environ. Sci. Technol., 39 (20), pp. 7845-7852
dc.relation.referencesHijnen, W.A.M., Beerendonk, E.F., Medema, G.J., Inactivation credit of UV radiation for virus, bacteria and protozoan (oo)cyst in water: a review (2006) Water Res., 40, pp. 3-22
dc.relation.referencesUSEPA, Water Treatment Manual: Disinfection (2011)
dc.relation.referencesKhan, S., Kim, J., Sotto, A., Van der Bruggen, B., Humic acid fouling in submerged photocatalytic membrane reactor with binary TiO2-ZrO2 particles (2015) J. Ind. Eng. Chem., 21, pp. 779-786
dc.relation.referencesSun, Z., Li, M., Li, W., Qiang, Z., A review of the fluence determination methods for the UV reactors: ensuring the reliability of UV disinfection (2022) Chemosphere, 268 (1)
dc.relation.referencesWright, H., Gaithuma, D., Greene, D., Aieta, M., Integration of validation, design and operation (2006) J. Am. Water Works Assoc., 98 (10), pp. 81-92
dc.relation.referencesBrownell, S.A., Chakrabarti, A.R., Kaser, F.M., Connelly, L.G., Peletz, A.L., Reygaldas, F., Lang, M.J., Nelson, K.L., Assessment of a low-cost, point-of use, ultraviolet water disinfection technology (2008) J. Water Health, pp. 53-65
dc.relation.references(2019) UV LED Water Disinfection: Validation and Small System Demonstration Study, , American Water Works Association Water Science
dc.relation.referencesChatterly, C., Linden, K., Demonstration and evaluation of germicidal UV-LEDs for poit-of-use water disinfection (2010) J. Water Health, 8 (3), pp. 479-486
dc.relation.referencesSommer, R., Cabaj, A., Pribil, W., Haider, T., Influence of lamp intensity and water transmittance on the UV disinfection of water (1997) Water Sci. Technol., 35 (11−12), pp. 113-118
dc.relation.referencesOppenheimer, J.A., Jacangelo, J.G., Laıˆné, J.M., Hoagland, J.E., Equivalency testing of ultraviolet disinfection for wastewater reclamation (1995) Proceedings of the American Water Works Association Water Quality Technology Conference, November 12–16, New Orleans, USA
dc.relation.referencesWatercare, Pilot plant investigations, surrogate study, results and recommendations (2002) Disinfection Review Group Report, , Water Care Services Ltd. New Zealand
dc.relation.referencesSommer, R., Weber, G., Cabaj, A., Wekerle, J., Keck, G., Schauberger, G., UV inactivation of micro-organisms in water (1989) Zentralblatt für Hygiene, 189, pp. 214-224
dc.relation.referencesWilson, B.R., Roessler, P.F., van Dellen, E., Abbaszadegan, M., Gerba, C.P., Coliphage MS2 as a UV water disinfection efficacy test surrogate for bacterial and viral pathogens (1992) Proceedings of the American Water Works Association Water Quality Technology Conference, November 15–19, Toronto, Canada
dc.relation.referencesMaier, A., Tougianidou, D., Wiedenmann, A., Botzenhart, K., Detection of poliovirus by cell culture and by PCR after UV disinfection (1995) Water Sci. Technol., 31 (5-6), pp. 141-145
dc.relation.referencesGerba, C.P., Gramos, D.M., Nwachuku, N., Comparative inactivation of enteroviruses and Adenovirus 2 by UV light (2002) Appl. Environ. Microbiol., 68 (10), pp. 5167-5169
dc.relation.referencesThurston-Enriquez, J.A., Haas, C.N., Jacangelo, J., Riley, K., Gerba, C.P., Inactivation of feline calicivirus and adenovirus type 40 by UV radiation (2003) Appl. Environ. Microbiol., 69 (1), pp. 577-582
dc.relation.referencesThompson, S.S., Jackson, J.L., Suva-Castillo, M., Yanko, W.A., El Jack, Z., Kuo, J., Ch, C., Schnurr, D.P., Detection of infectious human Adenoviruses in tertiary treated and ultraviolet-disinfected waste water (2003) Water Environ. Res., 75 (2), pp. 163-170
dc.relation.referencesBaldasso, V., Lubarsky, H., Pichel, N., Turolla, A., Antonelli, M., Hincapie, M., Botero, L., Fernandez-Ibañez, P., UVC inactivation of MS2-phage in drinking water – modelling amd field testing (2021) Water Res., 203
dc.relation.referencesAbbaszadegani, M., Hasan, M.N., Gerba, C.P., Roessler, P.F., Wilson, B.R., Kuennen, R., Van Dellen, E., The disinfection efficacy of a point-of-use water treatment system against bacterial, viral and protozoan waterborne pathogens (1997) Water Res., 32 (3), pp. 574-582
dc.relation.referencesYounis, B.A., Mahoney, L., Palomo, N., A novel system for water disinfection with UV radiation (2018) Water, 10, p. 1275
dc.relation.referencesGadgil, A., Field-testing UV disinfection of drinking water (1997) Water and Sanitation for all: Partnerships and Innovations, , 23th WEDC Conference South Africa
dc.relation.referencesJones, L.A., Worobo, R.W., Smarta, C.D., UV light inactivation of human and plant pathogens in unfiltered surface irrigation water (2013) Appl. Environ. Microbiol., pp. 849-854
dc.relation.referencesCheng, R., Shen, L., Wang, Q., Xiang, S., Shi, L., Zheng, X., Lv, W., Photocatalysis Membrane Reactor (PMR) for removal in drinking water: effect of humic acid (2018) Catalysts, 8 (7), p. 284
dc.relation.referencesSustainable Development Goals, The United Nations (UN) https://sdgs.un.org/goals, URL:
dc.relation.referencesWHO, International scheme to evaluate household water treatment technologies (2014) Harmonized Testing Protocol: Technology Non-specify, , https://www.who.int/household_water/scheme/HarmonizedTestProtocol.pdf, Last access 07/01/2020. URL:
dc.relation.references(2016) ISO 12103-1:2016 road vehicles – test contaminants for filter evaluation – part 1: Arizona test dust, , ISO
dc.relation.referencesWHO, Evaluating Household Water Treatment Options: Health Based Targets and Microbiological Performance Specifications (2011), ISBN 9789241548229
dc.relation.referencesSchijven, J.K., Hassanizadeh, S.M., Removal of viruses by soil passage: overview of modelling, processes and parameters (2000) Crit. Rev. Environ. Sci. Technol., 30 (1), pp. 49-127
dc.relation.referencesWHO, Guidelines for Drinking-Water Quality (2017), World Health Organization
dc.relation.referencesAdams, M.H., Bacteriophages (1959), Interscience Publisher Inc. New York
dc.relation.referencesBolton, J.R., Linden, K.G., Standarization of methods for Fluence (UV dose) determination in bench-scale UV experiments (2003) J. Environ. Eng., 129 (3), pp. 209-215
dc.relation.referencesWatson, H.E., A note on the variation of the rate of disinfection with change in the concentration of the disinfectant (1908) Epidemiol. Infect., 8, pp. 536-542
dc.relation.referencesRahn, R.O., Potassium iodide as a chemical Actinometer for 254 nm radiation: use of iodate as an electron scavenger (1997) Photochem. Photobiol., 66 (4), pp. 450-455
dc.relation.referencesAfkhami, A., Marotta, M., Dixon, D., Nigel, G.T., Montoya, L.J., Hincapie, M., Galeano, L., Dunlop, P.S.M., Assessment of low-cost cartridge filters for implementation in household drinking-water treatment systems (2021) Journal of Processing Engineering, 39
dc.relation.referencesLeenheerand, J.A., Crowe, J.P., Characterizing Dissolved Aquatic Organic Matter. Environmental Science and Technology (2003), 37, pp. 18-26
dc.relation.referencesRodriguez, F.J., Nuñez, L.A., Characterization of aquatic humic substances (2011) Water and Environmental Journal, pp. 163-170
dc.relation.referencesFilella, M., Freshwater: which NOM matters? (2009) Environ. Chem. Lett., 7, pp. 21-35
dc.relation.referencesLoge, F.J., Emerick, R.W., Ginn, T.R., Darby, J.L., Association of coliform bacteria with wastewater particles: impact of operational parameters of the activated sludge process (2001) Water Res., 36 (1), pp. 41-48
dc.relation.referencesTempleton, M.R., Andrews, R.C., Hofmann, R., Impact of iron particles in groundwater on the UV inactivation of bacteriophages MS2 and T4 (2016) Water and Environmental Journal, pp. 732-741
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record