Mostrar el registro sencillo del ítem

dc.contributor.authorJimenez M
dc.contributor.authorVelásquez N
dc.contributor.authorJimenez J.E
dc.contributor.authorBarco J
dc.contributor.authorBlessent D
dc.contributor.authorLópez-Sánchez J
dc.contributor.authorCastrillón S.C
dc.contributor.authorValenzuela C
dc.contributor.authorTherrien R
dc.contributor.authorBoico V.F
dc.contributor.authorMúnera J.C.
dc.date.accessioned2022-09-14T14:34:06Z
dc.date.available2022-09-14T14:34:06Z
dc.date.created2022
dc.identifier.issn13648152
dc.identifier.urihttp://hdl.handle.net/11407/7562
dc.descriptionThe La Miel River watershed is an area of high hydrological interest in Colombia due to its abundant water resources, high annual precipitation, and hydroelectric power generation. This work proposes a sequential modeling framework to quantify the spatially and temporally variable groundwater recharge and to analyze its impact on piezometric fluctuations in the study area, where the groundwater flow is affected by geological faults. Water Modeling Framework (WMF) and HydroGeoSphere (HGS) models have been used to calculate groundwater recharge and distribution of hydraulic heads, respectively. Recharge computed with WMF is used as input to HGS to compare groundwater flow 1) with uniform and spatially variable recharge, 2) with and without discrete fractures, and 3) during dry and wet conditions. The results generate valuable knowledge for water resource management and highlight the importance of groundwater recharge estimation and a proper representation of fractured aquifers. © 2022 Elsevier Ltdeng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85122991995&doi=10.1016%2fj.envsoft.2022.105328&partnerID=40&md5=8eb066a24d6fd116a2e67de81ec9e806
dc.sourceEnvironmental Modelling and Software
dc.titleSequential surface and subsurface flow modeling in a tropical aquifer under different rainfall scenarios
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1016/j.envsoft.2022.105328
dc.subject.keywordAquifer rechargeeng
dc.subject.keywordHydroGeoSphereeng
dc.subject.keywordRainfall scenarioseng
dc.subject.keywordWMFeng
dc.relation.citationvolume149
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationJimenez, M., Facultad de Ingeniería, Ingeniería Ambiental, Universidad de Medellín, Colombia
dc.affiliationVelásquez, N., Iowa Flood Center, University of Iowa, C. Maxwell Stanley Hydraulics LaboratoryIowa, United States
dc.affiliationJimenez, J.E., Facultad de Ingeniería, Ingeniería Ambiental, Universidad de Medellín, Colombia
dc.affiliationBarco, J., Facultad de Ingeniería, Ingeniería Ambiental, Universidad de Medellín, Colombia
dc.affiliationBlessent, D., Facultad de Ingeniería, Ingeniería Ambiental, Universidad de Medellín, Colombia
dc.affiliationLópez-Sánchez, J., Facultad de Ingeniería, Ingeniería Ambiental, Universidad de Medellín, Colombia
dc.affiliationCastrillón, S.C., Facultad de Ingeniería, Ingeniería Ambiental, Universidad de Medellín, Colombia
dc.affiliationValenzuela, C., Facultad de Ingeniería, Ingeniería Ambiental, Universidad de Medellín, Colombia
dc.affiliationTherrien, R., Université Laval, Département de Géologie et Génie Géologique, Canada
dc.affiliationBoico, V.F., Université Laval, Département de Géologie et Génie Géologique, Canada
dc.affiliationMúnera, J.C., Agua y Medio Ambiente, Corporación Centro de Ciencia y Tecnología de Antioquia CTA, Medellín, Colombia
dc.relation.referencesAquanty, HydroGeoSphere - Aquanty: User Manual (2013), p. 459. , Aquanty Waterloo, ON
dc.relation.referencesAnderson, M.P., Woessner, W.W., Hunt, R.J., Applied Groundwater Modeling Simulation of Flow and Advective Transport (2015), p. 630. , second ed. Academic Press
dc.relation.referencesBarthel, R., Banzhaf, S., Groundwater and surface water interaction at the regional-scale – a review with focus on regional integrated models (2015) Water Resour. Manag., 30, pp. 1-32
dc.relation.referencesBatelaan, O., De Smedt, F., GIS-based recharge estimation by coupling surface–subsurface water balances (2007) J. Hydrol., 337, pp. 337-355
dc.relation.referencesBerre, I., Doster, F., Keilegavlen, E., Flow in fractured porous media: a review of conceptual models and discretization approaches (2019) Transport Porous Media, 130, pp. 215-236
dc.relation.referencesBeven, K., How far can we go in distributed hydrological modelling? (2001) Hydrology and Earth System Sciences, 5 (1), pp. 1-12
dc.relation.referencesBournas, A., Baltas, E., Increasing the efficiency of the sacramento model on event basis in a mountainous river basin (2021) Environ. Proc.
dc.relation.referencesBrunner, P., Simmons, C.T., HydroGeoSphere: a fully integrated, physically based hydrological model (2012) Ground Water, 50 (2), pp. 170-176
dc.relation.referencesCardoso De Salis, H.H., Da Costa, A.M., Moreira Vianna, J.H., Azeneth Schule, R.M., Künne, A., Sanches Fernandes, L.F., Leal Pacheco, F.A., Hydrologic modeling for sustainable water resources management in urbanized karst areas (2019) Int. J. Environ. Res. Publ. Health, 9 (16), p. 2542
dc.relation.referencesChandio, A.S., Lee, T.S., Mirjat, M.S., The extent of waterlogging in the lower Indus Basin (Pakistan) — a modeling study of groundwater levels (2012) J. Hydrol., 426-427, pp. 103-111
dc.relation.referencesChaney, N.W., Herman, J., Reed, P., Wood, E., Flood and drought hydrologic monitoring: the role of model parameter uncertainty (2015) Hydrol. Earth Syst. Sci., 19 (7), pp. 3239-3251
dc.relation.referencesCorpocaldas Corporacion Autonoma Regional de Caldas, Cornare (Corporacion Autonoma Regional de los Rios Negro y Nare), MADS (Ministerio de Ambiente y Desarrollo Sostenible), MinHacienda (Ministerio de Hacienda y Credito Publico) (2016) Plan de ordenación y manejo de cuenca hidrográfica (POMCA) del río la Miel, p. 345. , Informe Tecnico
dc.relation.referencesCrawford, N.C., Linsley, R.K., Digital Simulation in Hydrology: Stanford Watershed Simulation-IV (1966), Technical Report 39 Stanford University Palo Alto
dc.relation.referencesDripps, W.R., Bradbury, K.R., The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin (2010) Hydrol. Process., 24, pp. 383-392
dc.relation.referencesEhtiat, S., Mousavi, J., Vaghefi, S.A., Ghaheri, A., Analysis of recharge conceptualization in inverse groundwater modelling (2016) Hydrol. Sci. J., 61 (15), pp. 2789-2801
dc.relation.referencesElgamal, A., Reggiani, P., Jonoski, A., Impact analysis of satellite rainfall products on flows imulations in the Magdalena River Basin, Colombia (2017) J. Hydrol.: Reg. Stud., 9, pp. 85-103
dc.relation.referencesFrancés, F., Vélez, J.I., Vélez, J.J., Split-parameter structure for the automatic calibration of distributed hydrological models (2007) J. Hydrol., 332, pp. 226-240
dc.relation.referencesGonzález, H., Geología de las planchas 206 Manizales y 225 Nevado del Ruíz Escala 1: 100.000 Memoria Explicativa (2001), INGEOMINAS
dc.relation.referencesHarou, J.J., Pulido-Velázquez, M., Rosenberg, D.E., Medellín-Azuara, J., Lund, J.R., Howitt, R.E., Hydro-economic models: concepts, design, applications, and future prospects (2009) J. Hydrol., 375, pp. 627-643
dc.relation.referencesHassan, T., Lubczynski, M.W., Niswonger, R.G., Su, Z., Surface–groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach (2014) J. Hydrol., 517, pp. 390-410
dc.relation.referencesHydroAlgorithmics Pty Ltd, AlgoMesh User Manual. HydroAlgorithmics (2016), p. 257
dc.relation.referencesHohmann, C., Kirchengast, G., Sungmin, O., Rieger, W., Foelsche, U., Small catchment runoff sensitivity to station density and spatial interpolation: hydrological modeling of heavy rainfall using a dense rain Gauge network (2021) Water (Switzerland), 13 (10)
dc.relation.referencesIDEAM, Aguas Subterráneas en Colombia una visión general (2013), p. 285. , (Instituto Científico de Hidrología, Meteorología y Estudios Ambientales)
dc.relation.referencesIDEAM, Instituto Científico de Hidrología, Meteorología y Estudios Ambientales (2019), p. 496. , Estudio Nacional de Agua
dc.relation.referencesIGAC Instituto geográfico Agustín Codazzi, Descripción detallada de suelos. Informe técnico (2014), p. 90
dc.relation.referencesIzbicki, J.A., Stamos, C.L., Nishikawa, T., Martin, P., Comparison of groundwater flow model particle-tracking results and isotopic data in the Mojave River groundwater basin, southern California, USA (2004) J. Hydrol., 292, pp. 30-47
dc.relation.referencesJayakrishnan, R., Srinivasan, R., Santhi, C., Arnold, J.G., Advances in the application of the SWAT model for water resources management (2005) Hydrol. Process., 19, pp. 749-762
dc.relation.referencesJasechko, S., Taylor, R.G., Intensive rainfall recharges tropical groundwaters (2015) Environ. Res. Lett., 10, p. 124015
dc.relation.referencesJhorar, R.K., Smit, A.A.M.F.R., Roest, C.W.J., Assessment of alternative water management options for irrigated agriculture (2009) Agric. Water Manag., 96, pp. 975-981
dc.relation.referencesJimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., Pulido-Velazquez, D., Cecilia, J.M., Estimation of instantaneous peak flow using machine-learning models and empirical formula in peninsular Spain (2017) Water, 9, p. 347
dc.relation.referencesJyrkama, M.I., Sykes, J.F., Normani, S.D., Recharge estimation for transient ground water modeling (2002) Ground Water, 40 (6), pp. 638-648
dc.relation.referencesKalbus, E., Reinstorf, F., Schirmer, M., Measuring methods for groundwater - surface water interactions: a review (2006) Hydrol. Earth Syst. Sci., 10, pp. 873-887
dc.relation.referencesKonikow, L.F., Kendy, E., Groundwater depletion: a global problem (2005) Hydrogeol. J., 13, pp. 317-320
dc.relation.referencesKurtzman, D., Navon, S., Morin, E., Improving interpolation of daily precipitation for hydrologic modelling: spatial patterns of preferred interpolators (2009) Hydrol. Process., 23 (23), pp. 3281-3291
dc.relation.referencesLamontagne, S., Taylor, A.R., Cook, P.G., Crosbie, R.S., Brownbill, R., Williams, R.M., Brunner, P., Field assessment of surface water–groundwater connectivity in a semi-arid river basin (Murray–Darling, Australia) (2014) Hydrol. Process., 28, pp. 1561-1572
dc.relation.referencesLerner, D., Kumar, P., Defining the basin of a borehole in an unconsolidated valley aquifer with limited data (1991) Quart. J. Eng. Geol. Hydrogeol., 24, pp. 323-331
dc.relation.referencesLevy, J., Xu, Y., Review: groundwater management and groundwater/surface-water interaction in the context of South African water policy (2012) Hydrogeol., 20, pp. 205-226
dc.relation.referencesLobo – Guerrero, A., Gilboa, Y., Groundwater in Colombia (1987) Hydrol. Sci. J., 32 (2), pp. 161-178
dc.relation.referencesMADS Ministerio de Ambiente y Desarrollo Sostenible, Guía Metodológica para la Formulación de Planes de Manejo Ambiental de Acuíferos (2014), p. 88
dc.relation.referencesManna, F., Murray, S., Abbey, D., Martin, P., Cherry, J., Parker, B., Spatial and temporal variability of groundwater recharge in a sandstone aquifer in a semiarid region (2019) Hydrol. Earth Syst. Sci., 23, pp. 2187-2205
dc.relation.referencesMarulanda-Aguirre, A., Fonseca-Tobasura, O.A., Vélez-Upegui, J.J., Cardona-Arboleda, O.D., Hydrological study of the potential effects of the melting of Nevado del Ruiz glacier on urban growth zones in Manizales, Colombia (2016) Hydrol. Sci. J., 61 (12), pp. 2179-2192
dc.relation.referencesMAVDT Ministerio de Ambiente Vivienda y Desarrollo Territorial, Política Nacional para la Gestión Integral del Recurso Hídrico (2010), p. 128
dc.relation.referencesMoeck, C., von Freybergb, J., Schirmer, M., Groundwater recharge predictions in contrasted climate: the effect of model complexity and calibration period on recharge rates (2018) Environ. Model. Software, 103, pp. 74-89
dc.relation.referencesNearing, G.S., Kratzert, F., Sampson, A.K., Pelissier, C.S., Klotz, D., Frame, J.M., Prieto, C., Gupta, H.V., What role does hydrological science lay in the age of machine learning? (2021) Water Resour. Res., 57
dc.relation.referencesNeumann, S., Trends, prospects and challenges in quantifying flow and transport through fractured rocks (2005) Hydrogeol. J., 13 (1), pp. 124-147
dc.relation.referencesOki, T., Kanae, S., Global hydrological cycles and world water resources (2006) Science, 313 (5790), pp. 1068-1072
dc.relation.referencesOkkonen, J., Kløve, B., A sequential modelling approach to assess groundwater–surface water resources in a snow dominated region of Finland (2011) J. Hydrol., 411 (1-2), pp. 91-107. , ISSN 0022-1694
dc.relation.referencesOssa-Valencia, J., Betancur-Vargas, T., Hydrogeochemical characterization and identification of a system of regional flow. Case study: the aquifer on the Gulf of Urabá, Colombia (2018) Rev. Fac. Ing., 86, pp. 9-18
dc.relation.referencesPartington, D., Brunner, P., Simmons, C.T., Therrien, R., Werner, A.D., Dandy, G.C., Maier, H.R., A hydraulic mixing-cell method to quantify the groundwater component of streamflow within spatially distributed fully integrated surface water–groundwater flow models (2011) Environ. Model. Software, 26 (7), pp. 886-898
dc.relation.referencesPérez-Sánchez, J., Senent-Aparicio, J., Segura-Méndez, F., Pulido-Velazquez, D., Srinivasan, R., Evaluating hydrological models for deriving water resources in peninsular Spain (2019) Sustainability, 11 (10), p. 2872. , 2019
dc.relation.referencesPiña, A., Donado, L.D., Blessent, D., Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media (2019) J. Hydrol., 569, pp. 556-572
dc.relation.referencesPulido-Velazquez, D., Renau-Pruñonosa, A., Llopis-Albert, C., Morell, I., Collados-Lara, A.J., Senent-Aparicio, J., Baena-Ruiz, L., Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers. A new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer (2018) Hydrol. Earth Syst. Sci., 22 (5), pp. 3053-3074
dc.relation.referencesRébori, M.G., Querner, E., Feler, M.V., Barrionuevo, N., Simulación del flujo de aguas subterráneas, aplicando el modelo de balance hidrológico SIMGRO en el noroeste de Buenos Aires, Argentina (2009), Conference paper
dc.relation.referencesRodell, M., Velicogna, I., Famiglietti, J.S., Satellite-based estimates of groundwater depletion in India (2009) Nature, 460, pp. 999-1002
dc.relation.referencesRodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Burke, S., Combined use of local and global hydro meteorological data with hydrological models for water resources management in the Magdalena - Cauca macro basin – Colombia (2020) Water Resour. Manag., 34, pp. 2179-2199. , 2019
dc.relation.referencesSeibert, J., On TOPMODEL's ability to simulate groundwater dynamics (1997) Regionalization in Hydrology, Proc. Conf. At Braunschweig, 254, pp. 211-220. , B. Dickkrüger M.J. Kirkby U. Schröder
dc.relation.referencesSelroos, J., Walker, D.D., Strom, A., Gylling, B., Follin, A., Comparison of alternative modeling approaches for groundwater flow in fractured rock (2002) J. Hydrol., 257, pp. 174-188
dc.relation.referencesSimunek, J., Sejna, M., Van Genuchten, M., HYDRUS 1D-software package for simulating the one-dimensional movement of water, heat and multiple solutes in variable saturated-media (1998) International Ground Water Modeling Center, Colorado School of Mines
dc.relation.referencesSingh, V.P., Hydrologic modeling: progress and future directions (2018) Geosci. Lett., 5 (15), pp. 5-15
dc.relation.referencesSophocleous, M.A., Koelliker, J.K., Govindaraju, R.S., Birdie, T., Ramireddygari, S.R., Perkins, S.P., Integrated numerical modeling for basin-wide water management: the case of the Rattlesnake Creek basin in south-central Kansas (2009) Hydrogeol. J., 214, pp. 179-196
dc.relation.referencesVelasquez, N., Botero, V., Velez, J.I., Rainfall distribution based on a delaunay triangulation method (2011) Transact. Comput. Sci. XIV, 65, pp. 173-187
dc.relation.referencesVelasquez, N., Hoyos, C.D., Velez, J.I., Zapata, E., Reconstructing the 2015 Salgar flash flood using radar retrievals and a conceptual modeling framework in an ungauged basin (2020) Hydrol. Earth Syst. Sci., 24, pp. 1367-1392
dc.relation.referencesVelez, J.I., Desarrollo de un modelo hidrológico conceptual y distribuido orientado a la simulación de crecidas (2001), PhD Dissertation Universidad de Valencia Spain
dc.relation.referencesVera-Torres, J., Estratigrafía: Principios y métodos (1994) Universidad de La República, Montevideo, Uruguay
dc.relation.referencesWei, R., Bailey, R.T., Records, R.M., Tyler, C., Wible, T.C., Arabi, M., Comprehensive simulation of nitrate transport in coupled surface-subsurface hydrologic systems using the linked SWAT-MODFLOW-RT3D model (2019) Environ. Model. Software, 122, p. 104242
dc.relation.referencesWijayarathne, D.B., Coulibaly, P., Identification of hydrological models for operational flood forecasting in St. John's, Newfoundland, Canada (2020) J. Hydrol.: Reg. Stud., 27
dc.relation.referencesYu, X., Moraetis, D., Liu, B., Nikolaidis, N.P., Li, B., Duffy, C., Liu, B., A coupled surface-subsurface hydrologic model to assess groundwater flood risk spatially and temporally (2019) Environ. Model. Software, 114, pp. 129-139
dc.relation.referencesZhang, L., Aspects of rock permeability (2013) Front. Struct. Civ. Eng., 7 (2), pp. 102-116
dc.relation.referencesZomlot, Z., Verbeiren, B., Huysmans, M., Batelaan, O., Spatial distribution of groundwater recharge and base flow: assessment of controlling factors (2015) J. Hydrol.: Reg. Stud., 4, pp. 349-368
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem