Mostrar el registro sencillo del ítem

dc.contributor.authorJimenez-Orozco C
dc.contributor.authorFigueras M
dc.contributor.authorFlórez E
dc.contributor.authorViñes F
dc.contributor.authorRodriguez J.A
dc.contributor.authorIllas F.
dc.date.accessioned2022-09-14T14:34:06Z
dc.date.available2022-09-14T14:34:06Z
dc.date.created2021
dc.identifier.issn19327447
dc.identifier.urihttp://hdl.handle.net/11407/7565
dc.descriptionMolybdenum carbides are promising alternative catalysts to Pt-group metals for the hydrogenation of unsaturated hydrocarbons. Nanostructuring has been shown to be an efficient way to boost the catalytic activity of these materials with MoCy nanoparticles (NPs) exhibiting a good performance when encapsulated inside zeolites or dispersed on inert supports such as carbon or gold. Hereby, we focus on a systematic DFT study of the interaction of MoCy NPs with ethylene (C2H4) as a general and simple approach for examining binding and activation of C═C bonds. Models for 14 NPs, with a Mo/C ratio in the 0.67-2.00 range, have been built following a cascade procedure. Several chemical descriptors, including the adsorption energy, structural NPs distortion, C═C deformation, and C2H4 attachment energy, have been analyzed along with a meticulous geometric and electronic characterization of bare NPs and C2H4 binding. The present results show that 1:1 stoichiometric Mo6C6, Mo12C12, and Mo24C24 and the nonstochiometric Mo4C6, Mo8C12 (MetCar), and Mo14C13 (nanocube) are excellent systems for the binding and activation of ethylene, exhibiting a much larger reactivity than a bulk δ-MoC(001) surface with a similar Mo/C ratio. In addition, C2H4 binding on the NPs with a Mo/C < 1.08 is advantageous because, apart from a rather large adsorption energy, it implies low energy values for NPs deformation (from 0.00 to 0.31 eV), C═C distortion (from 0.30 to 0.52 eV), and C2H4 attachment (from -2.12 to -2.58 eV). These theoretical results point to the ideal MoCy size and composition for C2H4 binding, providing a background for further experimental studies aimed at the preparation of MoCy NPs as hydrogenation catalysts. © 2021 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85103436929&doi=10.1021%2facs.jpcc.0c10689&partnerID=40&md5=488d412533b73160a9c371782486e7bf
dc.sourceJournal of Physical Chemistry C
dc.titleSize and stoichiometry effects on the reactivity of mocynanoparticles toward ethylene
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1021/acs.jpcc.0c10689
dc.subject.keywordAliphatic compoundseng
dc.subject.keywordBinding energyeng
dc.subject.keywordCarbideseng
dc.subject.keywordCatalyst activityeng
dc.subject.keywordChemical activationeng
dc.subject.keywordChemical analysiseng
dc.subject.keywordDeformationeng
dc.subject.keywordHydrogenationeng
dc.subject.keywordMolybdenum compoundseng
dc.subject.keywordZeoliteseng
dc.subject.keywordAdsorption energieseng
dc.subject.keywordAlternative catalystseng
dc.subject.keywordChemical descriptorseng
dc.subject.keywordElectronic characterizationeng
dc.subject.keywordHydrogenation catalysteng
dc.subject.keywordMolybdenum carbideeng
dc.subject.keywordNanoparticle (NPs)eng
dc.subject.keywordUnsaturated ydrocarbonseng
dc.subject.keywordEthyleneeng
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationJimenez-Orozco, C., Facultad de Ciencias Básicas, Grupo de Materiales con Impacto (Matandmpac), Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationFigueras, M., Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona, 08028, Spain
dc.affiliationFlórez, E., Facultad de Ciencias Básicas, Grupo de Materiales con Impacto (Matandmpac), Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationViñes, F., Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona, 08028, Spain
dc.affiliationRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
dc.affiliationIllas, F., Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona, 08028, Spain
dc.relation.referencesWilson, J.N., Otvos, J.W., Stevenson, D.P., Wagner, C.D., Hydrogenation of Olefins over Metals (1953) Ind. Eng. Chem., 45, pp. 1480-1487
dc.relation.referencesDhandapani, B., St. Clair, T., Oyama, S.T., Simultaneous Hydrodesulfurization, Hydrodeoxygenation, and Hydrogenation with Molybdenum carbide (1998) Appl. Catal., A, 168, pp. 219-228
dc.relation.referencesBus, E., Ramaker, D.E., van Bokhoven, J.A., Structure of Ethene Adsorption Sites on Supported Metal Catalysts from in Situ XANES Analysis (2007) J. Am. Chem. Soc., 129, pp. 8094-8102
dc.relation.referencesBinder, A., Seipenbusch, M., Muhler, M., Kasper, G., Kinetics and Particle Size Effects in Ethene Hydrogenation over Supported Palladium Catalysts at Atmospheric Pressure (2009) J. Catal., 268, pp. 150-155
dc.relation.referencesTsung, C., Kuhn, J.N., Huang, W., Aliaga, C., Hung, L., Somorjai, G.A., Yang, P., Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation (2009) J. Am. Chem. Soc., 131, pp. 5816-5822
dc.relation.referencesAboul-Gheit, A.K., Aboul-Fotouh, S.M., Aboul-Gheit, N.A.K., Hydroconversion of Cyclohexene Using Catalysts Containing Pt, Pd, Ir, and Re Supported on H-ZSM-5 Zeolite (2005) Appl. Catal., A, 283, pp. 157-164
dc.relation.referencesSapi, A., Thompson, C., Wang, H., Michalak, W.D., Ralston, W.T., Alayoglu, S., Somorjai, G.A., Recovery of Pt Surfaces for Ethylene Hydrogenation-Based Active Site Determination (2014) Catal. Lett., 144, pp. 1151-1158
dc.relation.referencesRioux, R.M., Komor, R., Song, H., Hoefelmeyer, J.D., Grass, M., Niesz, K., Yang, P., Somorjai, G.A., Kinetics and Mechanism of Ethylene Hydrogenation Poisoned by CO on Silica-supported Monodisperse Pt Nanoparticles (2008) J. Catal., 254, pp. 1-11
dc.relation.referencesCunha, D.S., Cruz, G.M., Hydrogenation of Benzene and Toluene over Ir Particles Supported on γ-Al2O3 (2002) Appl. Catal., A, 236, pp. 55-66
dc.relation.referencesGuil, J.M., Masiá, A.P., Paniego, A.R., Menayo, J.M.T., Energetics of H2and O2Adsorption on Ir/γ-Al2O3and Ir/SiO2Catalysts. Dependence on Support and on Metal Particle Size (1998) Thermochim. Acta, 312, pp. 115-124
dc.relation.referencesPiegsa, A., Korth, W., Demir, F., Jess, A., Hydrogenation and Ring Opening of Aromatic and Naphthenic Hydrocarbons over Noble Metal (Ir, Pt, Rh)/Al2O3Catalysts (2012) Catal. Lett., 142, pp. 531-540
dc.relation.referencesLevy, R.B., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549
dc.relation.referencesArdakani, S.J., Liu, X., Smith, K.J., Hydrogenation and Ring Opening of Naphthalene on Bulk and Supported Mo2C Catalysts (2007) Appl. Catal., A, 324, pp. 9-19
dc.relation.referencesHwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO2Activation and Hydrogenation on δ-MoC(001) and β-Mo2C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921
dc.relation.referencesRocha, A.S., Rocha, A.B., da Silva, V.T., Benzene Adsorption on Mo2C: A Theoretical and Experimental Study (2010) Appl. Catal., A, 379, pp. 54-60
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120, pp. 13531-13540
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- And Mo-Terminations for Bonding and Hydrogenation Reactions (2017) J. Phys. Chem. C, 121, pp. 19786-19795
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study (2020) ACS Catal., 10, pp. 6213-6222
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Moreno, A., Rodriguez, J.A., Platinum vs. Transition Metal Carbide Surfaces as Catalysts for Olefin and Alkyne Conversion: Binding and Hydrogenation of Ethylidyne (2019) J. Phys.: Conf. Ser., 1247, p. 012003
dc.relation.referencesFigueras, M., Jurado, A., Morales-Garcia, á., Viñes, F., Illas, F., Bulk (in)stability as a Possible Source of Surface Reconstruction (2020) Phys. Chem. Chem. Phys., 22, pp. 19249-19253
dc.relation.referencesFigueras, M., Gutiérrez, R.A., Viñes, F., Ramírez, P.J., Rodriguez, J.A., Illas, F., Supported Molybdenum Carbide Nanoparticles as Hot Hydrogen Reservoirs for Catalytic Applications (2020) J. Phys. Chem. Lett., 11, pp. 8437-8441
dc.relation.referencesHorn, J.M., Song, Z., Potapenko, D.V., Hrbek, J., White, M.G., Characterization of Molybdenum Carbide Nanoparticles Formed on Au(111) Using Reactive-Layer Assisted Deposition (2005) J. Phys. Chem. B, 109, p. 44
dc.relation.referencesGao, J., Zheng, Y., Fitzgerald, G.B., de Joannis, J., Tang, Y., Wachs, I.E., Podkolzin, S.G., Structure of Mo2Cxand Mo4CxMolybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM-5 Zeolites (2014) J. Phys. Chem. C, 118, pp. 4670-4679
dc.relation.referencesDai-Viet, N.V., Adesina, A.A., Fischer-Tropsch synthesis over alumina-supported molybdenum carbide catalyst (2011) Appl. Catal., A, 399, pp. 221-232
dc.relation.referencesShou, H., Davis, R.J., Multi-product steady-state isotopic transient kinetic analysis of CO hydrogenation over supported molybdenum carbide (2013) J. Catal., 306, pp. 91-99
dc.relation.referencesBaddour, F.G., Roberts, E.J., To, A.T., Wang, L., Habas, S.E., Ruddy, D.A., Bedford, N.M., Malmstadt, N., Exceptionally Mild and Scalable Solution-Phase Synthesis of Molybdenum Carbide Nanoparticles for Thermocatalytic CO2Hydrogenation (2020) J. Am. Chem. Soc., 142, pp. 1010-1019
dc.relation.referencesLamiel-Garcia, O., Bromley, S.T., Illas, F., Low-energy Nanoscale Clusters of (TiC)nn = 6, 12: A Structural and Energetic Comparison with MgO (2013) Theor. Chem. Acc., 132, p. 1312
dc.relation.referencesViñes, F., Gomes, J.R.B., Illas, F., Understanding the Reactivity of Metallic Nanoparticles: Beyond the Extended Surface Model for Catalysis (2014) Chem. Soc. Rev., 43, pp. 4922-4939
dc.relation.referencesQuesne, M., Roldán, A., De Leeuw, N.H., Catlow, C.R.A., Bulk and surface properties of metal carbides: implications for catalysis (2018) Phys. Chem. Chem. Phys., 20, pp. 6905-6916
dc.relation.referencesViñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., A systematic Density Functional Theory Study of the Electronic Structure of Bulk and (001) Surface of Transition-metals Carbides (2005) J. Chem. Phys., 122, p. 174709
dc.relation.referencesGuo, B.C., Kerns, K.P., Castleman, A.W., Jr., Ti8C12+-Metallo-Carbohedrenes: A New Class of Molecular Clusters? (1992) Science, 255, p. 1411
dc.relation.referencesPilgrim, J.S., Duncan, M.A., Beyond Metallo-carbohedrenes: Growth and Decomposition of Metal-carbon Nanocrystals (1993) J. Am. Chem. Soc., 115, pp. 9724-9727
dc.relation.referencesKresse, G., Furthmüller, J., Efficient Iterative Schemes for ab initio Total-energy Calculations Using a Plane-wave Basis Set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesPoliti, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-index Surfaces (2013) Phys. Chem. Chem. Phys., 15, pp. 12617-12625
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J. Chem. Phys., 132, p. 154104
dc.relation.referencesKunkel, C., Viñes, F., Illas, F., Transition Metal Carbides as Novel Materials for CO2Capture, Storage, and Activation (2016) Energy Environ. Sci., 9, pp. 141-144
dc.relation.referencesLiu, X., Kunkel, C., Ramírez de la Piscina, P., Homs, N., Viñes, F., Illas, F., Effective and Highly Selective CO Generation from CO2Using a Polycrystalline α-Mo2C Catalyst (2017) ACS Catal., 7, pp. 4323-4335
dc.relation.referencesBlöchl, P.E., Projector Augmented-wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979
dc.relation.referencesKresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775
dc.relation.referencesHa, M., Baxter, E.T., Cass, A., Anderson, S.L., Alexandrova, A.N., Boron Switch for Selectivity of Catalytic Dehydrogenation on Size-Selected Pt Clusters on Al2O3 (2017) J. Am. Chem. Soc., 139, pp. 11568-11575
dc.relation.referencesGorey, T.J., Zandkarimi, B., Li, G., Baxter, E.T., Alexandrova, A.N., Anderson, S.L., Coking-Resistant Sub-Nano Dehydrogenation Catalysts: PtnSnx/SiO2(n = 4, 7) (2020) ACS Catal., 10, pp. 4543-4558
dc.relation.referencesLi, G., Zandkarimi, B., Cass, A., Gorey, T.J., Allen, B.J., Alexandrova, A.N., Anderson, S.L., Sn-modification of Pt7/alumina model catalysts: Suppression of carbon deposition and enhanced thermal stability (2020) J. Chem. Phys., 152, p. 024702
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Montoya, A., Rodriguez, J.A., Binding and Activation of Ethylene on Tungsten Carbide and Platinum Surfaces (2019) Phys. Chem. Chem. Phys., 21, pp. 17332-17342
dc.relation.referencesBader, R., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press: New York
dc.relation.referencesBromley, S., Moreira, I.P.R., Neyman, K.M., Illas, F., Approaching Nanoscale Oxides: Models and Theoretical Methods (2009) Chem. Soc. Rev., 38, pp. 2657-2670
dc.relation.referencesShen, J., Hill, J.M., Watwe, R.M., Spiewak, B.E., Dumesic, J.A., Microcalorimetric, Infrared Spectroscopic, and DFT Studies of Ethylene Adsorption on Pt/SiO2and Pt-Sn/SiO2Catalysts. J (1999) J. Phys. Chem. B, 103, pp. 3923-3934
dc.relation.referencesWatwe, R.M., Spiewak, B.E., Cortright, R.D., Dumesic, J.A., Density Functional Theory (DFT) Studies of C1and C2Hydrocarbons Species on Pt Clusters (1998) J. Catal., 180, pp. 184-193
dc.relation.referencesCrampton, A.S., Rötzer, M.D., Schweinberger, F.F., Yoon, B., Landman, U., Heiz, U., Controlling Ethylene Hydrogenation Reactivity on Pt13Clusters by Varying the Stoichiometry of the Amorphous Silica Support (2016) Angew. Chem., Int. Ed., 55, pp. 8953-8957
dc.relation.referencesSun, G., Fuller J.T., I.I.I., Alexandrova, A.N., Sautet, P., Global Activity Search Uncovers Reaction Induced Concomitant Catalyst Restructuring for Alkane Dissociation on Model Pt Catalysts (2021) ACS Catal., 11, pp. 1877-1885
dc.relation.referencesLiu, P., Rodriguez, J.A., Muckerman, J.T., The Ti8C12Metcar: A New Model Catalyst for Hydrodesulfurization (2004) J. Phys. Chem. B, 108, pp. 18796-18798
dc.relation.referencesLiu, P., Rodriguez, J.A., Effects of carbon on the stability and chemical performance of transition metal carbides: A density functional study (2004) J. Chem. Phys., 120, p. 5414
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem