Mostrar el registro sencillo del ítem

dc.contributor.authorCortés-Borda D
dc.contributor.authorPolanco J.-A
dc.contributor.authorEscobar-Sierra M.
dc.date.accessioned2022-09-14T14:34:07Z
dc.date.available2022-09-14T14:34:07Z
dc.date.created2022
dc.identifier.issn14629011
dc.identifier.urihttp://hdl.handle.net/11407/7569
dc.descriptionHydropower dams could benefit the three dimensions of sustainability of the river basins where they are deployed. However, experiences from large hydropower projects worldwide taught that large hydropower dams may cause serious social and environmental concerns that ultimately derive into public disapproval. Hydropower industries are increasingly aware that public support is a determining factor that could restrict the development of large hydropower projects, and hence industries have started to take action. Recently, a large hydropower industry from Colombia has implemented actions aimed at sustainability to improve the environmental and social welfare of territories without deviating from the business core. However, formulating effective sustainability policies that consider the different viewpoints of industrials, policymakers, and the general community is challenging. Hence, here we aim to identify cause-effect correlations between the impact management actions taken by the firm and the public perception of the impacts caused by two large hydropower dams in the Colombian Andes. To this end, we performed 50 stepwise logistic regressions between ad-hoc impact management perception indices (predictor variables) and impact perception variables (response variables). The data is based on a 25-question survey assessing the public perceptions of 694 respondents from two river basins and three social groups. Findings revealed 28 significant correlations between impacts and impact management, showing that the corporate actions for environmental protection play a crucial role in the public attitudes on sustainability. Our findings may provide guidelines to develop tailored policies aimed at sustainability in the hydropower sector of developing countries. © 2022eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85128993229&doi=10.1016%2fj.envsci.2022.03.026&partnerID=40&md5=007b293def45a0e97520388e94d3d6cb
dc.sourceEnvironmental Science and Policy
dc.titleSocial perception assessment of hydropower sustainability: A stepwise logistic regression modeling
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programAdministración de Empresas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.envsci.2022.03.026
dc.subject.keywordDeveloping countrieseng
dc.subject.keywordHydropowereng
dc.subject.keywordLogistic modelseng
dc.subject.keywordPerceptioneng
dc.subject.keywordSustainabilityeng
dc.subject.keywordAdulteng
dc.subject.keywordAndeseng
dc.subject.keywordArticleeng
dc.subject.keywordColombiaeng
dc.subject.keywordDeveloping countryeng
dc.subject.keywordEnvironmental protectioneng
dc.subject.keywordFemaleeng
dc.subject.keywordhumaneng
dc.subject.keywordHuman experimenteng
dc.subject.keywordHydropowereng
dc.subject.keywordMajor clinical studyeng
dc.subject.keywordMaleeng
dc.subject.keywordPerceptioneng
dc.subject.keywordPractice guidelineeng
dc.subject.keywordPredictor variableeng
dc.subject.keywordResponse variableeng
dc.subject.keywordRiver basineng
dc.subject.keywordSocial welfareeng
dc.relation.citationvolume134
dc.relation.citationstartpage108
dc.relation.citationendpage118
dc.publisher.facultyFacultad de Ciencias Económicas y Administrativas
dc.affiliationCortés-Borda, D., Faculty of economic and administrative sciences, University of Medellin, Colombia
dc.affiliationPolanco, J.-A., Faculty of economic and administrative sciences, University of Medellin, Colombia
dc.affiliationEscobar-Sierra, M., Faculty of economic and administrative sciences, University of Medellin, Colombia
dc.relation.referencesAdesanya, A.A., Can Michigan's upper peninsula achieve justice in transitioning to 100% renewable electricity? Survey of public perceptions in sociotechnical change (2021) Sustainability, 13, pp. 1-25
dc.relation.referencesAhmed, U.I., Ying, L., Bashir, M.K., Abid, M., Zulfiqar, F., Status and determinants of small farming households’ food security and role of market access in enhancing food security in rural Pakistan (2017) PLoS One, p. 12
dc.relation.referencesAmini, M., Bienstock, C.C., Corporate sustainability: an integrative definition and framework to evaluate corporate practice and guide academic research (2014) J. Clean. Prod., 76, pp. 12-19
dc.relation.referencesArabatzis, G., Myronidis, D., Contribution of SHP Stations to the development of an area and their social acceptance (2011) Renew. Sustain. Energy Rev.
dc.relation.referencesArnaiz, M., Cochrane, T.A., Hastie, R., Bellen, C., Micro-hydropower impact on communities’ livelihood analysed with the capability approach (2018) Energy Sustain. Dev., 45, pp. 206-210
dc.relation.referencesAshrafi, M., Adams, M., Walker, T.R., Magnan, G., How corporate social responsibility can be integrated into corporate sustainability: a theoretical review of their relationships (2018) Int. J. Sustain. Dev. World Ecol., 25, pp. 671-681
dc.relation.referencesBaird, I.G., Shoemaker, B.P., Manorom, K., The people and their river, the World Bank and its dam: revisiting the Xe Bang Fai River in Laos (2015) Dev. Change, 46, pp. 1080-1105
dc.relation.referencesBartle, A., Hydropower potential and development activities (2002) Energy Policy, 30, pp. 1231-1239
dc.relation.referencesBaumgartner, R.J., Organizational culture and leadership: preconditions for the development of sustainable corporation (2009) Sustain. Dev., 17, pp. 102-113
dc.relation.referencesBrinkman, E., Seekamp, E., Davenport, M.A., Brehm, J.M., Community capacity for watershed conservation: a quantitative assessment of indicators and core dimensions (2012) Environ. Manag., 50, pp. 736-749
dc.relation.referencesCaceres, A.L., Jaramillo, P., Matthews, H.S., Samaras, C., Nijssen, B., Hydropower under climate uncertainty: characterizing the usable capacity of Brazilian, Colombian and Peruvian power plants under climate scenarios (2021) Energy Sustain. Dev., 61, pp. 217-229
dc.relation.referencesCaporale, D., De Lucia, C., Social acceptance of on-shore wind energy in Apulia Region (Southern Italy) (2015) Renew. Sustain. Energy Rev., 52, pp. 1378-1390
dc.relation.referencesCernea, M.M., Hydropower Dams and Social Impacts: A Sociological Perspective (1997), The World Bank
dc.relation.referencesChopra, A., Ramachandran, P., Understanding water institutions and their impact on the performance of the water sector in India (2021) Water Policy, 23, pp. 466-486
dc.relation.referencesDahlmann, F., Bullock, G., Nexus thinking in business: analysing corporate responses to interconnected global sustainability challenges (2020) Environ. Sci. Policy, 107, pp. 90-98
dc.relation.referencesDe La Maza, C., Davis, A., Azevedo, I., Welfare analysis of the ecological impacts of electricity production in Chile using the sparse multinomial logit model (2021) Ecol. Econ., 184
dc.relation.referencesDel Bene, D., Scheidel, A., Temper, L., More dams, more violence? A global analysis on resistances and repression around conflictive dams through co-produced knowledge (2018) Sustain. Sci, 13, pp. 617-633
dc.relation.referencesdel Río, D.A., Moffett, H., Nieto-Londoño, C., Vásquez, R.E., Escudero-Atehortúa, A., Chivor's life extension project (CLEP): from sediment management to development of a new intake system (2020) Water, 12, p. 2743
dc.relation.referencesDuarte-Abadía, B., Boelens, R., Roa-Avendaño, T., Hydropower, encroachment and the re-patterning of hydrosocial territory: the case of hidrosogamoso in Colombia (2015) Hum. Organ, 74, pp. 243-254
dc.relation.referencesDumouchel, W., Integrating a Robust option into a multiple regression computing (1992) Environment
dc.relation.referencesDuque, E., González, J., Restrepo, J., The clean development mechanism as a means to assess the Kyoto Protocol in Colombia (2017) Int. J. Renew. Energy Res., 7 (3), pp. 1205-1212
dc.relation.referencesEnevoldsen, P., Sovacool, B.K., Examining the social acceptance of wind energy: practical guidelines for onshore wind project development in France (2016) Renew. Sustain. Energy Rev., 53, pp. 178-184
dc.relation.referencesFader, M., Cranmer, C., Lawford, R., Engel-Cox, J., Toward an understanding of synergies and trade-offs between water, energy, and food SDG targets (2018) Front. Environ. Sci., 6, p. 112
dc.relation.referencesFiner, M., Jenkins, C.N., Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity (2012) PLoS One, 7
dc.relation.referencesGomby, G., Sand in demand: trapped behind dams (2017) Science, 358 (80), p. 180
dc.relation.referencesGupta, J., Pahl-Wostl, C., Zondervan, R., “Glocal” water governance: a multi-level challenge in the anthropocene (2013) Curr. Opin. Environ. Sustain.
dc.relation.referencesHidalgo-Bastidas, J., Boelens, R., Hydraulic order and the politics of the Governed: the Baba Dam in Coastal Ecuador (2019) Water, 11, p. 409
dc.relation.referencesHolland, P.W., Welsch, R.E., (2007), http://dx.doi.org/10.1080/036109277088275336,813–827, Robust regression using iteratively reweighted least-squares. https://doi.org/10.1080/03610927708827533
dc.relation.referencesHuijts, N.M.A., Molin, E.J.E., Steg, L., Psychological factors influencing sustainable energy technology acceptance: a review-based comprehensive framework (2012) Renew. Sustain. Energy Rev.
dc.relation.referencesIke, M., Denis Donovan, J., Topple, C., Masli, E.K., A holistic perspective on corporate sustainability from a management viewpoint: evidence from Japanese manufacturing multinational enterprises (2019) J. Clean. Prod., 216, pp. 139-151
dc.relation.references(2020), International Energy Agency Hydropower, IEA, Paris
dc.relation.references(2000), International Hydropower Association Hydropower and the World's Energy Future
dc.relation.references(2021), International Hydropower Association Hydropower Status Report – Sector trends and insights, UK
dc.relation.referencesJha, S., Kaechele, H., Sieber, S., Factors influencing the adoption of water conservation technologies by smallholder farmer households in Tanzania (2019) Water, 11, p. 2640
dc.relation.referencesJiménez-Inchima, I., Polanco, J.-A., Escobar-Sierra, M., Good living of communities and sustainability of the hydropower business: mapping an operational framework for benefit sharing (2021) Energy Sustain. Soc., 11, p. 9
dc.relation.referencesJohansson, M., Laike, T., Intention to respond to local wind turbines: the role of attitudes and visual perception (2007) Wind Energy, 10, pp. 435-451
dc.relation.referencesKaldellis, J.K., Social attitude towards wind energy applications in Greece (2005) Energy Policy, 33, pp. 595-602
dc.relation.referencesKelly-Richards, S., Silber-Coats, N., Crootof, A., Tecklin, D., Bauer, C., Governing the transition to renewable energy: a review of impacts and policy issues in the small hydropower boom (2017) Energy Policy
dc.relation.referencesKumar, D., Katoch, S.S., Sustainability suspense of small hydropower projects: a study from western Himalayan region of India (2015) Renew. Energy, 76, pp. 220-233
dc.relation.referencesLegese, G., Van Assche, K., Stelmacher, T., Tekleworld, H., Kelboro, G., Land for food or power? Risk governance of dams and family farms in Southwest Ethiopia (2018) Land Use Policy, 75, pp. 50-59
dc.relation.referencesLiden, R., Specialist, H., Lyon, K., (2014), The Hydropower Sustainability Assessment Protocol For Use By World Bank Clients Lessons Learned and Recommendations. World Bank, Washington, DC
dc.relation.referencesLiu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., Lubchenco, J., Li, S., Systems integration for global sustainability (2015) Science, , 80
dc.relation.referencesLozano, R., Carpenter, A., Huisingh, D., A review of “theories of the firm” and their contributions to corporate sustainability (2015) J. Clean. Prod., pp. 430-442
dc.relation.referencesLütjohann, H., The stepwise regression algorithm seen from the statistician's point of view (1970) Metr. Int. J. Theor. Appl. Stat., 15, pp. 110-125
dc.relation.referencesMartínez, V., Castillo, O.L., The political ecology of hydropower: social justice and conflict in Colombian hydroelectricity development (2016) Energy Res. Soc. Sci., 22, pp. 69-78
dc.relation.referencesMayeda, A.M., Boyd, A.D., Factors influencing public perceptions of hydropower projects: a systematic literature review (2020) Renew. Sustain. Energy Rev.
dc.relation.referencesMayer, A., Castro-Diaz, L., Lopez, M.C., Leturcq, G., Moran, E.F., Is hydropower worth it? Exploring amazonian resettlement, human development and environmental costs with the Belo Monte project in Brazil (2021) Energy Res. Soc. Sci., 78
dc.relation.referencesMeng, Y., Liu, J., Leduc, S., Mesfun, S., Kraxner, F., Mao, G., Qi, W., Wang, Z., Hydropower Production Benefits More From 1.5°C than 2°C Climate Scenario (2020) Water Resour. Res., p. 56
dc.relation.referencesMeng, Y., Liu, J., Wang, Z., Mao, G., Wang, K., Yang, H., Undermined co-benefits of hydropower and irrigation under climate change (2021) Resour. Conserv. Recycl, p. 167
dc.relation.referencesMoldavska, A., Welo, T., A Holistic approach to corporate sustainability assessment: incorporating sustainable development goals into sustainable manufacturing performance evaluation (2019) J. Manuf. Syst., 50, pp. 53-68
dc.relation.referencesMontiel, I., Delgado-Ceballos, J., Defining and measuring corporate sustainability: are we there yet? (2014) Organ. Environ.
dc.relation.referencesMoran, E.F., Lopez, M.C., Moore, N., Müller, N., Hyndman, D.W., (2018), https://doi.org/10.1073/pnas.1809426115, Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. U. S. A. 115, 11891–11898
dc.relation.referencesNautiyal, H., Goel, V., Sustainability assessment of hydropower projects (2020) J. Clean. Prod., p. 265
dc.relation.referencesNgor, P.B., Lek, S., McCann, K.S., Hogan, Z.S., Dams threaten world's largest inland fishery (2018) Nature, 563, p. 184
dc.relation.referencesNtanos, S., Kyriakopoulos, G., Chalikias, M., Arabatzis, G., Skordoulis, M., Public perceptions and willingness to pay for renewable energy: a case study from Greece (2018) Sustainability, 10, p. 687
dc.relation.referencesOwusu, K., Obour, P.B., Nkansah, M.A., Downstream effects of dams on livelihoods of river-dependent communities: the case of Ghana's Kpong Dam. Geogr. Tidsskr. - Danish (2017) J. Geogr., 117, pp. 1-10
dc.relation.referencesPahl-Wostl, C., Governance of the water-energy-food security nexus: a multi-level coordination challenge (2019) Environ. Sci. Policy, 92, pp. 356-367
dc.relation.referencesPérez-Rincón, M., Vargas-Morales, J., Crespo-Marín, Z., Trends in social metabolism and environmental conflicts in four Andean countries from 1970 to 2013 (2018) Sustain. Sci., 13, pp. 635-648
dc.relation.referencesPérez-Rincón, M., Vargas-Morales, J., Martinez-Alier, J., Mapping and analyzing ecological distribution conflicts in Andean Countries (2019) Ecol. Econ., 157, pp. 80-91
dc.relation.referencesPoff, N.L., Olden, J.D., Can dams be designed for sustainability? (2017) Science, 358, pp. 1252-1253. , 80
dc.relation.referencesPolanco, J.A., Exploring governance for sustainability in contexts of violence: the case of the hydropower industry in Colombia (2018) Energy Sustain. Soc., 8, pp. 1-15
dc.relation.referencesPolanco, J.A., (2017), Ramírez-Atehortúa, F.H. Evaluación de la sostenibilidad en empresas de energía
dc.relation.referencesUna investigación aplicada a centrales de generación hidroeléctrica. Medellín
dc.relation.referencesPolanco, J.A., Ramírez-Atehortúa, F.H., Montes-Gómez, L.F., Botero-Hernández, B.A., Barco, M.O., Effect of sediment management decision on a hydropower plant value (2020) DYNA, 87, pp. 232-240
dc.relation.referencesPulice, S.M.P., Moretto, E.M., The financial compensation and the development of Brazilian municipalities flooded by hydroelectric dams (2017) Ambient. e Soc., 20, pp. 103-126
dc.relation.referencesQuiceno, G., Álvarez, C., Ávila, R., Fernández, Ó., Franco, C.J., Kunc, M., Dyner, I., Scenario analysis for strategy design: a case study of the Colombian electricity industry (2019) Energy Strateg. Rev., 23, pp. 57-68
dc.relation.referencesRaadal, H.L., Gagnon, L., Modahl, I.S., Hanssen, O.J., Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power (2011) Renew. Sustain. Energy Rev.
dc.relation.referencesRasche, A., Waddock, S., McIntosh, M., The United Nations Global compact: retrospect and prospect (2013) Bus. Soc., 52, pp. 6-30
dc.relation.referencesRay, P.A., Bonzanigo, L., Wi, S., Yang, Y.-C.E., Karki, P., García, L.E., Rodriguez, D.J., Brown, C.M., Multidimensional stress test for hydropower investments facing climate, geophysical and financial uncertainty (2018) Glob. Environ. Change, 48, pp. 168-181
dc.relation.referencesReddy, V.R., Uitto, J.I., Frans, D.R., Matin, N., Achieving global environmental benefits through local development of clean energy? The case of small hilly hydel in India (2006) Energy Policy, 34, pp. 4069-4080
dc.relation.referencesRehman, S., Al-Hadhrami, L.M., Alam, M.M., Pumped hydro energy storage system: a technological review (2015) Renew. Sustain. Energy Rev., 44, pp. 586-598
dc.relation.referencesRoa-García, M.C., Brown, S., Assessing equity and sustainability of water allocation in Colombia (2017) Local Environ., 22, pp. 1080-1104
dc.relation.referencesRockström, J., Steffen, W., Noone, K., Persson, A., Chapin, F.S., III, Lambin, E., Lenton, T.M., Foley, J., Planetary boundaries: exploring the safe operating space for humanity (2009) Ecol. Soc., p. 14
dc.relation.referencesRodríguez-de-Francisco, J.C., Duarte-Abadía, B., Boelens, R., Payment for ecosystem services and the water-energy-food nexus: securing resource flows for the affluent? (2019) Water, 11, p. 1143
dc.relation.referencesSchulz, C., Martin-Ortega, J., Glenk, K., Understanding public views on a dam construction boom: the role of values (2019) Water Resour. Manag., 33, pp. 4687-4700
dc.relation.references(1997), Scott Long, J. Regression models for categorical and limited dependent variables.USA
dc.relation.referencesShaktawat, A., Vadhera, S., Risk management of hydropower projects for sustainable development: a review (2021) Environ. Dev. Sustain., 23, pp. 45-76
dc.relation.referencesShaw, K., Hill, S.D., Boyd, A.D., Monk, L., Reid, J., Einsiedel, E.F., Conflicted or constructive? Exploring community responses to new energy developments in Canada (2015) Energy Res. Soc. Sci., 8, pp. 41-51
dc.relation.referencesSherren, K., Beckley, T.M., Parkins, J.R., Stedman, R.C., Keilty, K., Morin, I., Learning (or living) to love the landscapes of hydroelectricity in Canada: eliciting local perspectives on the Mactaquac Dam via headpond boat tours (2016) Energy Res. Soc. Sci., 14, pp. 102-110
dc.relation.referencesSiciliano, G., Urban, F., Equity-based natural resource allocation for infrastructure development: evidence from large hydropower dams in Africa and Asia (2017) Ecol. Econ., 134, pp. 130-139
dc.relation.referencesSiciliano, G., Urban, F., Kim, S., Dara Lonn, P., Hydropower, social priorities and the rural-urban development divide: the case of large dams in Cambodia (2015) Energy Policy, 86, pp. 273-285
dc.relation.referencesSierra, R.G., Sarmiento, Á.Z., New advances in decision making theory under uncertainty and its application in mega projects of hydropower (2016) World Trans. Eng. Technol. Educ., 14 (2), pp. 313-317
dc.relation.referencesSiri, R., Mondal, S.R., Das, S., (2021), https://doi.org/10.1007/698_2020_635, Hydropower: a renewable energy resource for sustainability in terms of climate change and environmental protection, Handbook of Environmental Chemistry
dc.relation.referencesSong, C., O'Malley, A., Zydlewski, J., Mo, W., Balancing fish-energy-cost tradeoffs through strategic basin-wide dam management (2020) Resour. Conserv. Recycl, p. 161
dc.relation.referencesStone, R., Mayhem on the Mekong (2011) Science, (80)
dc.relation.referencesSuárez-Gómez, J.D., Polanco, J.A., Escobar-Sierra, M., Understanding the role of territorial factors in the large-scale hydropower business sustainability: a systematic literature review (2021) Energy Rep., 7, pp. 3249-3266
dc.relation.referencesTabi, A., Wüstenhagen, R., Keep it local and fish-friendly: social acceptance of hydropower projects in Switzerland (2017) Renew. Sustain. Energy Rev.
dc.relation.references(2015), United Nations Transforming our world: the 2030 Agenda for Sustainable Development. Department of Economic and Social Affairs
dc.relation.references(2007), United Nations Environmental Programme Dams and Development Project - Relevant practices for improved decision-making
dc.relation.referencesvan Zanten, J.A., van Tulder, R., Multinational enterprises and the sustainable development goals: an institutional approach to corporate engagement (2018) J. Int. Bus. Policy, 1, pp. 208-233
dc.relation.referencesVasseur, V., Kemp, R., The adoption of PV in the Netherlands: a statistical analysis of adoption factors (2015) Renew. Sustain. Energy Rev.
dc.relation.referencesWang, C., A Guide for Local Benefit Sharing in Hydropower Projects (2012), World Bank Washington, DC
dc.relation.referencesWang, P., Lassoie, J.P., Dong, S., Morreale, S.J., A framework for social impact analysis of large dams: a case study of cascading dams on the Upper-Mekong River, China (2013) J. Environ. Manag., 117, pp. 131-140
dc.relation.referencesWhiteman, G., Walker, B., Perego, P., Planetary boundaries: ecological foundations for corporate sustainability (2013) J. Manag. Stud., 50, pp. 307-336
dc.relation.referencesWinemiller, K.O., McIntyre, P.B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, I.G., Sáenz, L., Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong (2016) Science, 351, pp. 128-129. , 80
dc.relation.referencesYoshida, Y., Lee, H.S., Trung, B.H., Tran, H.D., Lall, M.K., Kakar, K., Xuan, T.D., (2020), https://doi.org/10.3390/su12062408, Impacts of mainstream hydropower dams on fisheries and agriculture in lower mekong basin. Sustain
dc.relation.referencesZanten, J.A., Tulder, R., Improving companies’ impacts on sustainable development: a nexus approach to the SDGS (2021) Bus. Strateg. Environ. bse, p. 2835
dc.relation.referencesZarfl, C., Berlekamp, J., He, F., Jähnig, S.C., Darwall, W., Tockner, K., Future large hydropower dams impact global freshwater megafauna (2019) Sci. Rep., p. 9
dc.relation.referencesZebker, M., Caicedo, J.D.H., Sobue, S., Dracup, B., Holden, D., Geohazard monitoring of the Ituango Dam using radar satellite based insar technology (2019), Dam Safety 2019, Conference Proceedings
dc.relation.referencesZhang, X., Li, H.Y., Deng, Z.D., Ringler, C., Gao, Y., Hejazi, M.I., Leung, L.R., Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development (2018) Renew. Energy
dc.relation.referencesZhou, Y., Hejazi, M., Smith, S., Edmonds, J., Li, H., Clarke, L., Calvin, K., Thomson, A., A comprehensive view of global potential for hydro-generated electricity (2015) Energy Environ. Sci., 8, pp. 2622-2633
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem