Mostrar el registro sencillo del ítem

dc.contributor.authorBalaguera A
dc.contributor.authorAlberti J
dc.contributor.authorCarvajal G.I
dc.contributor.authorFullana-I-palmer P.
dc.date.accessioned2022-09-14T14:34:09Z
dc.date.available2022-09-14T14:34:09Z
dc.date.created2021
dc.identifier.issn20711050
dc.identifier.urihttp://hdl.handle.net/11407/7579
dc.descriptionRoads with low traffic volume link rural settlements together and connect them with urban centres, mobilising goods and agricultural products, and facilitating the transportation of people. In Colombia, most of these roads are in poor conditions, causing social, economic, and environmental problems, and significantly affecting the mobility, security, and economic progress of the country and its inhabitants. Therefore, it is essential to implement strategies to improve such roads, keeping in mind technical, economic, and environmental criteria. This article shows the results of the application of the environmental life cycle assessment—LCA—to sections of two low-traffic roads located in two different sites in Colombia: one in the Urrao area (Antioquia), located in the centre of the country; and another in La Paz (Cesar), located in the northeast of the country. Each segment was stabilised with alternative materials such as brick dust, fly ash, sulfonated oil, and polymer. The analysis was carried out in three stages: the first was the manufacture of the stabiliser; the second included preliminary actions that ranged from the search for the material to its placement on site; and the third was the stabilisation process, which included the entire application process, from the stabiliser to the road. The environmental impacts are mainly found in the manufacture of stabilisers (60% of the total), for sulfonated oil or polymer, due to the different compounds used during production, before their use as stabilisers. The impact categories with the greatest influence were abiotic depletion potential (ADP), global warming potential (GWP) and terrestrial ecotoxicity potential (TETP). For the stabilisation stage (impact between 40% and 99%), ash and brick dust have the highest impacts. The impact categories most influenced in this stage were: acidification potential (AP), freshwater aquatic ecotoxicity potential (FAETP), human toxicity potential (HTP), marine aquatic ecotoxicity potential (MAETP) and photochemical ozone creation potential (POCP). © 2021 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85102537026&doi=10.3390%2fsu13052458&partnerID=40&md5=0fedf23925e0c41b5d019908376143a4
dc.sourceSustainability (Switzerland)
dc.titleStabilising rural roads with waste streams in colombia as an environmental strategy based on a life cycle assessment methodology
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civil
dc.type.spaArtículo
dc.identifier.doi10.3390/su13052458
dc.subject.keywordAlternative materialseng
dc.subject.keywordCircular economyeng
dc.subject.keywordConstructioneng
dc.subject.keywordLife cycle assessmenteng
dc.subject.keywordRoad stabilisationeng
dc.subject.keywordWaste managementeng
dc.subject.keywordAcidificationeng
dc.subject.keywordAsheng
dc.subject.keywordDusteng
dc.subject.keywordFreshwater environmenteng
dc.subject.keywordGlobal warmingeng
dc.subject.keywordLife cycle analysiseng
dc.subject.keywordMulticriteria analysiseng
dc.subject.keywordOzoneeng
dc.subject.keywordPhotochemistryeng
dc.subject.keywordPolymereng
dc.subject.keywordStrategic approacheng
dc.subject.keywordToxicityeng
dc.subject.keywordAntioquia [Colombia]eng
dc.subject.keywordBoliviaeng
dc.subject.keywordCesareng
dc.subject.keywordColombiaeng
dc.subject.keywordLa Paz [Bolivia]eng
dc.relation.citationvolume13
dc.relation.citationissue5
dc.relation.citationstartpage1
dc.relation.citationendpage20
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationBalaguera, A., UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pompeu Fabra University, Passeig Pujades 1, Barcelona, 08003, Spain, Facultad de Ingenierías, Universidad de Medellín, Medellín, 050010, Colombia
dc.affiliationAlberti, J., UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pompeu Fabra University, Passeig Pujades 1, Barcelona, 08003, Spain
dc.affiliationCarvajal, G.I., Facultad de Ingenierías, Universidad de Medellín, Medellín, 050010, Colombia
dc.affiliationFullana-I-palmer, P., UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pompeu Fabra University, Passeig Pujades 1, Barcelona, 08003, Spain
dc.relation.references(2017) Política para la Gestión de la Red Terciaria: Presupuesto Informado por Resultados, , DNP. Departamento Nacional de Planeación: Bogotá, Colombia
dc.relation.referencesMuñoz, F., Arias, Y.P., Hidalgo, C., Evaluación del polvo de ladrillo como estabilizante de suelo perteneciente a vías terciarias (2015) Proceedings from: Simposio Colombiano Sobre Ingeniería de Pavimentos, pp. 1-10. , Santa Marta, Colombia
dc.relation.references(2017) Del Total de la red vial terciaria con la que cuenta Colombia, 96% está en mal estado, , https://www.larepublica.co/infraestructura/del-total-de-la-red-vial-terciaria-con-la-que-cuenta-colombia-96-esta-en-mal-estado-2828335, La República. Available on-line: (accessed on 27 September 2019)
dc.relation.referencesMuñoz, F., (2016) Evaluación de las Propiedades Hidráulicas de Suelos Estabilizados con Polvo de Ladrillo Utilizados en vías de Bajos Volúmenes de Tránsito, , Universidad de Medellín: Medellín, Colombia
dc.relation.references(2005) Guía para el Diseño y la Construcción de Capas Estructurales de Pavimentos Estabilizados Mediante Procesos Químicos, , IDU. Instituto de Desarrollo Urbano: Bogotá, Colombia
dc.relation.referencesCadavid, L., Restrepo, F., (2007) Evaluación del Efecto de la Erosión por Escorrentía Superficial en Suelos Residuales Arenosos Estabilizados con Cemento o cal, , Universidad de Medellín: Medellín, Colombia
dc.relation.referencesCardona, C., Ruiz, N., (2005) Determinación de la Dosificación de cal para la Estabilización de Suelos Granulares de Dioritas, bajo Análisis de Pruebas Estadísticas, , Universidad de Medellín: Medellín, Colombia
dc.relation.referencesEchavarria, J., Arroyave, N., (2006) Diseño de Mezclas de Suelo-Cemento para Estructuras Ingenieriles, Utilizando Suelo Residual Proveniente de Diorite, , Universidad de Medellín: Medellín, Colombia
dc.relation.referencesGómez, C., Osorio, J., (2004) Análisis del Comportamiento Estático de un Suelo Tipo Granular Adicionado con Cal, , Universidad de Medellín: Medellín, Colombia
dc.relation.referencesOrtiz, C., Barreto, J., (2005) Mejoramiento de Suelos con cal Fase III, , Universidad de Medellín: Medellín, Colombia
dc.relation.references(2012) Especificaciones Generales de Construcción de Carreteras, , INVIAS. Instituto Nacional de Vías: Bogotá, Colombia
dc.relation.referencesDa Rocha, C.G., Passuello, A.C., Consoli, N.C., Samaniego, R.A.Q., Kanazawa, N.M., Life cycle assessment for soil stabilization dosages: A study for the Paraguayan Chaco (2016) J. Clean. Prod, 139, pp. 309-318. , [CrossRef]
dc.relation.referencesLarrea-Gallegos, G., Vázquez-Rowe, I., Gallice, G., Life cycle assessment of the construction of an unpaved road in an undisturbed tropical rainforest area in the vicinity of Manu National Park, Peru (2016) Int. J. Life Cycle Assess, 22, pp. 1109-1124. , [CrossRef]
dc.relation.referencesKneese, A.V., Ayres, R.U., D’Arge, R.C., (2015) Economics and the Environment: A Materials Balance Approach, , RFF Resources for the Future: New York, NY, USA
dc.relation.referencesGhisellini, P., Cialani, C., Ulgiati, S., A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems (2016) J. Clean. Prod, 114, pp. 11-32. , [CrossRef]
dc.relation.referencesFullana-i-Palmer, P., Puig, R., Bala, A., Baquero, G., Riba, J., Raugei, M., From Life Cycle Assessment to Life Cycle Management (2011) J. Ind. Ecol, 15, pp. 458-475. , [CrossRef]
dc.relation.referencesDe Larriva, R.A., Rodríguez, G.C., López, J.M.C., Raugei, M., I Palmer, P.F., A decision-making LCA for energy refurbishment of buildings: Conditions of comfort (2014) Energy Build, 70, pp. 333-342. , [CrossRef]
dc.relation.referencesBloom, E.F., Horstmeier, G.J., Pakes Ahlman, A., Edil, T.B., Whited, G., Assessing the Life Cycle Benefits of Recycled Material in Road Construction (2017), http://rmrc.wisc.edu/wp-content/uploads/2017/05/GeoChicago-Conference-Paper-I-94-and-Beltline-LCA.pdf, GeoChicago-Conference-Paper-I-94-and-Beltline-LCA. (accessed on 30 December 2020)
dc.relation.referencesChiu, C.-T., Hsu, T.-H., Yang, W.-F., Life cycle assessment on using recycled materials for rehabilitating asphalt pavements (2008) Resour. Conserv. Recycl, 52, pp. 545-556. , [CrossRef]
dc.relation.referencesChowdhury, R., Apul, D., Fry, T., A life cycle based environmental impacts assessment of construction materials used in road construction (2010) Resour. Conserv. Recycl, 54, pp. 250-255. , [CrossRef]
dc.relation.referencesHung, M.-L., Ma, H.-W., Chao, C.-W., Screening the Life Cycle Impact Assessment Methods and Modifying Environmental Impact Model to Determine Environmental Burdens (2009) J. Environ. Eng. Manag, 19, pp. 155-164. , http://ser.cienve.org.tw/download/19-3/jeeam19-3_155-164.pdf, (accessed on 30 December 2020)
dc.relation.referencesAldaco, R., Margallo, M., Fullana-i-Palmer, P., Bala, A., Gazulla, C., Irabien, A., Aldaco, R., Introducing life cycle thinking to define best available techniques for products: Application to the anchovy canning industry (2017) J. Clean. Prod, 155, pp. 139-150. , [CrossRef]
dc.relation.referencesLasvaux, S., Gantner, J., Wittstock, B., Bazzana, M., Schiopu, N., Saunders, T., Gazulla, C., Fullana-i-Palmer, P., Achieving consistency in life cycle assessment practice within the European construction sector: The role of the EeBGuide InfoHub (2014) Int. J. Life Cycle Assess, 19, pp. 1783-1793. , [CrossRef]
dc.relation.referencesBenveniste, G., Gazulla, C., Fullana-i-Palmer, P., Celades, I., Ros, T., Zaera, V., Godes, B., Análisis de ciclo de vida y reglas de categoría de producto en la construcción. El caso de las baldosas cerámicas (2011) Informes de la Construcción, 63, pp. 71-81. , [CrossRef]
dc.relation.referencesMroueh, U.-M., Eskola, P., Laine-Ylijoki, J., Life-cycle impacts of the use of industrial by-products in road and earth construction (2001) Waste Manag, 21, pp. 271-277. , [CrossRef]
dc.relation.referencesRajendran, S., Gambatese, J., Solid Waste Generation in Asphalt and Reinforced Concrete Roadway Life Cycles (2007) J. Infrastruct. Syst, 13, pp. 88-96. , [CrossRef]
dc.relation.referencesBirgisdottir, H., Bhander, G., Hauschild, M., Christensen, T., Life cycle assessment of disposal of residues from municipal solid waste incineration: Recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model (2007) Waste Manag, 27, pp. S75-S84. , [CrossRef] [PubMed]
dc.relation.referencesCelauro, C., Corriere, F., Guerrieri, M., Casto, B.L., Environmentally appraising different pavement and construction scenarios: A comparative analysis for a typical local road (2015) Transp. Res. Part D Transp. Environ, 34, pp. 41-51. , [CrossRef]
dc.relation.referencesBalaguera, A., Carvajal, G.I., Albertí, J., Fullana-i-Palmer, P., Life cycle assessment of road construction alternative materials: A literature review (2018) Resour. Conserv. Recycl, 132, pp. 37-48. , [CrossRef]
dc.relation.referencesBala, A., Raugei, M., Benveniste, G., Gazulla, C., Fullana-i-Palmer, P., Bala, A., Simplified tools for global warming potential evaluation: When ‘good enough’ is best (2010) Int. J. Life Cycle Assess, 15, pp. 489-498. , [CrossRef]
dc.relation.referencesNavarro, A., Puig, R., Fullana-I-Palmer, P., Product vs corporate carbon footprint: Some methodological issues. A case study and review on the wine sector (2017) Sci. Total Environ, pp. 722-733. , 581, 582, [CrossRef]
dc.relation.referencesPuig, R., Fullana-i-Palmer, P., Baquero, G., Riba, J.-R., Bala, A., A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making (2013) Waste Manag, 33, pp. 2789-2797. , [CrossRef]
dc.relation.referencesMackie, P., Nellthorp, J., Laird, J., (2005) Low Volume Rural Roads, pp. 1-9. , http://documentos.bancomundial.org/curated/es/286811468339867486/Low-volume-rural-roads, 1 January (accessed on 30 December 2020)
dc.relation.referencesBalaguera, A., Carvajal, G.I., Jaramillo, Y.P.A., Albertí, J., Fullana-i-Palmer, P., Technical feasibility and life cycle assessment of an industrial waste as stabilizing product for unpaved roads, and influence of packaging (2018) Sci. Total. Environ, 651, pp. 1272-1282. , [CrossRef]
dc.relation.referencesPaez, D., Efectos de la estabilización electroquímica de suelos finos (2005) Rev. Ing. UPTC, 18, pp. 83-96
dc.relation.referencesCamacho-Tauta, J., Ortiz, O.J.R., Mayorga, C., Efecto de la radiación UV en arcillas expansivas tratadas con aceite sulfonado (2011) Ingeniería y Competitividad, 12, pp. 41-50. , [CrossRef]
dc.relation.references(2006) ISO 14044:2006(E)—Environmental management—Life cycle assessment—Requirements and guidelines, p. 42. , https://www.iso.org/standard/38498.html, ISO. English, (accessed on 28 January 2021)
dc.relation.referencesEnvironmental management—Life cycle assessment—Principles and framework (2006) Environmental Management—Life Cycle Assessment—Principles and Framework, , ISO 14040 ISO: Geneva, Switzerland, [CrossRef]
dc.relation.referencesBaitz, M., Albrecht, S., Brauner, E., Broadbent, C., Castellan, G., Conrath, P., Fava, J., I Palmer, P.F., LCA’s theory and practice: Like ebony and ivory living in perfect harmony? (2013) Int. J. Life Cycle Assess, 18, pp. 5-13. , [CrossRef]
dc.relation.references(2006) ISO 14025—Environmental Labels and Declarations—Type III Environmental Declarations—Principles and Procedures, , https://www.normativa-iso-une-pdf.com/descarga/pdf/une-en-iso-140252010/, ISO. (accessed on 28 January 2021)
dc.relation.referencesBarthel, M., Fava, J., James, K., Khan, S., (2017) Hotspots Analysis an Overarching Methodological Framework and Guidance for Product and Sector Level Application, , www.lifecycleinitiative.org, (accessed on 30 December 2020)
dc.relation.referencesChomkhamsri, K., Wolf, M.-A., Pant, R., International Reference Life Cycle Data System (ILCD) Handbook: Review Schemes for Life Cycle Assessment (2011) Towards Life Cycle Sustainability Management, pp. 107-117. , Springer: Cham, Switzerland, [CrossRef]
dc.relation.referencesDelgado-Aguilar, M., Tarrés, Q., Pèlach, M.À., Mutjé, P., Fullana-i-Palmer, P., Are Cellulose Nanofibers a Solution for a More Circular Economy of Paper Products? (2015) Environ. Sci. Technol, 49, pp. 12206-12213. , [CrossRef]
dc.relation.referencesGuinée, J.B., (2002) Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards, , Kluwer Academic Publishers: New York, NY, USA
dc.relation.references(2013) Product Category Rules for Type III Environmental Product Declaration of Construction Products to EN 15804: 2012, , http://www.bre.co.uk/filelibrary/materials/bre_en_15804_pcr.pn514.pdf, BRE. (accessed on 30 December 2020)
dc.relation.referencesRashid, A.F.A., Idris, J., Sumiani, Y., Environmental Impact Analysis on Residential Building in Malaysia Using Life Cycle Assessment (2017) Sustainability, 9, p. 329. , [CrossRef]
dc.relation.referencesQuintero, A.B., Cano, D.G., Peláez, G.C., Arias, Y.P., Technical and Environmental Assessment of an Alternative Binder for Low Traffic Roads with LCA Methodology (2017) Proceedings of the 3rd Pan American Materials Congress, , Springer International Publishing: Cham, Switzerland
dc.relation.referencesBueno, C., Hauschild, M.Z., Rossignolo, J., Ometto, A.R., Crespo-Mendes, N., Sensitivity analysis of the use of Life Cycle Impact Assessment methods: A case study on building materials (2016) J. Clean. Prod, 112, pp. 2208-2220. , [CrossRef]
dc.relation.referencesHuarachi, D.A.R., Gonçalves, G., De Francisco, A.C., Canteri, M.H.G., Piekarski, C.M., Life cycle assessment of traditional and alternative bricks: A review (2020) Environ. Impact Assess. Rev, 80, p. 106335. , [CrossRef]
dc.relation.referencesAraújo, J.P.C., Oliveira, J.R., Da Silva, H.M.R.D., The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements (2014) Transp. Res. Part D Transp. Environ, 32, pp. 97-110. , [CrossRef]
dc.relation.referencesSantos, J., Ferreira, A., Flintsch, G.W., A life cycle assessment model for pavement management: Road pavement construction and management in Portugal (2014) Int. J. Pavement Eng, 16, pp. 315-336. , [CrossRef]
dc.relation.referencesWu, D., Zhang, F., Lou, W., Li, D., Chen, J., Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels (2017) Sci. Total Environ, pp. 172-179. , 605, 606, [CrossRef]
dc.relation.referencesRand, Ingersoll, (2015) Ficha Técnica Vibrocompactador, , http://maquqam.com/tecnicas/carreteras-3337/ingersoll-rand/sd70d.html, (accessed on 30 December 2020)
dc.relation.referencesDeere, John, (2015) Ficha Técnica Motoniveladora, , http://maquqam.com/tecnicas/construccion-6735/john-deere/570b.html, (accessed on 30 December 2020)
dc.relation.references(2018) Estrategia Nacional de Economía Circular 2018–2022, , https://id.presidencia.gov.co/Paginas/prensa/2019/190614-Presidente-Duque-Estrategia-Nacional-Economia-Circular-primera-politica-ambiental-de-este-tipo-en-America-Latina.aspx#:~{}:text=La%20Estrategia%20Nacional%20de%20Econom%C3%ADa%20Circular%20transformar%C3%A1%20las%20cadenas%20de,Am%C3%A9rica%20Latina%20para%20el%20203057, Ministerio de Ambiente y Desarrollo Sostenible. (accessed on 30 December 2020)
dc.relation.references(2016) Agua para el siglo XXI para América del Sur. De la División a la Acción, , https://www.cepal.org/samtac/noticias/documentosdetrabajo/5/23345/InCo00200.pdf, CEPAL. (accessed on 30 December 2020)
dc.relation.referencesSiracusa, V., Ingrao, C., Giudice, A.L., Mbohwa, C., Rosa, M.D., Environmental assessment of a multilayer polymer bag for food packaging and preservation: An LCA approach (2014) Food Res. Int, 62, pp. 151-161. , [CrossRef]
dc.relation.referencesMuench, S.T., Roadway Construction Sustainability Impacts (2010) Transp. Res. Rec. J. Transp. Res. Board, 2151, pp. 36-45. , [CrossRef]
dc.relation.referencesJohnson, D., Heltzel, R., Nix, A.C., Clark, N., Darzi, M., Greenhouse gas emissions and fuel efficiency of in-use high horsepower diesel, dual fuel, and natural gas engines for unconventional well development (2017) Appl. Energy, 206, pp. 739-750. , [CrossRef]
dc.relation.referencesKaravalakis, G., Hajbabaei, M., Jiang, Y., Yang, J., Johnson, K.C., Cocker, D.R., Durbin, T.D., Regulated, greenhouse gas, and particulate emissions from lean-burn and stoichiometric natural gas heavy-duty vehicles on different fuel compositions (2016) Fuel, 175, pp. 146-156. , [CrossRef]
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem