Show simple item record

dc.contributor.authorCastrillon S.O
dc.contributor.authorMarín L.M.G
dc.contributor.authorVillegas H.H.J
dc.contributor.authorEscobar C.C.P.
dc.date.accessioned2022-09-14T14:34:09Z
dc.date.available2022-09-14T14:34:09Z
dc.date.created2022
dc.identifier.issn16469895
dc.identifier.urihttp://hdl.handle.net/11407/7580
dc.descriptionThe main challenge for health insurers is to properly manage the disease as well as the health of its members, emphasizing the prevention and implementation of actions that allow the anticipation and prediction of the disease. This article presents a systematic review of the literature on the main machine learning methodologies that allow, through the prediction of mental illnesses, to carry out an early intervention. It was found that the main methodologies for this purpose are statistical models such as logistic regression, Vector support machine and random forest; and that the different indicators of neuroimaging use of cell phonesbecome fundamental predictor variables when it comes to predicting mental illnesses. © 2022, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.eng
dc.language.isospa
dc.publisherAssociacao Iberica de Sistemas e Tecnologias de Informacao
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85127594818&partnerID=40&md5=a8b4f64be78833e1ff7345a0c34367e3
dc.sourceRISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
dc.titleStatistics applied in the classification and prediction of depression: A systematic review [Machine learning aplicado en la clasificación y predicción de la depresión: Una revisión sistemática]
dc.typeReview
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Sistemas
dc.publisher.programCiencias Básicas
dc.type.spaRevisión
dc.subject.keywordDepressioneng
dc.subject.keywordMachine learningeng
dc.subject.keywordSystematic revieweng
dc.relation.citationissueSpecial Issue 47
dc.relation.citationstartpage363
dc.relation.citationendpage375
dc.publisher.facultyFacultad de Ingenierías
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationCastrillon, S.O., Maestría en modelación y ciencia computacional, Universidad de Medellín, Sabaneta, 055450, Colombia
dc.affiliationMarín, L.M.G., Profesora titular Facultad de ingenierías, carrera 74 # 41 – 16, Medellín, 050032, Colombia
dc.affiliationVillegas, H.H.J., Universidad de Medellín, grupo Modelación y Computación Científica, Medellín, 050026, Colombia
dc.affiliationEscobar, C.C.P., Universidad de Medellín, grupo Modelación y Computación Científica, Medellín, 050026, Colombia
dc.relation.referencesAladag, A. E., Muderrisoglu, S., Akbas, N. B., Zahmacioglu, O., Bingol, H. O., Detecting suicidal ideation on forums: Proof-of-concept study (2018) Journal of Medical Internet Research, 20 (6). , https://doi.org/10.2196/jmir.9840
dc.relation.referencesAlberdi, A., Weakley, A., Schmitter-Edgecombe, M., Cook, D. J., Aztiria, A., Basarab, A., Barrenechea, M., Smart Home-Based Prediction of Multidomain Symptoms Related to Alzheimer’s Disease (2018) IEEE Journal of Biomedical and Health Informatics, 22 (6), pp. 1720-1731. , https://doi.org/10.1109/JBHI.2018.2798062
dc.relation.referencesBarros, J., Morales, S., Echávarri, O., García, A., Ortega, J., Asahi, T., Moya, C., Núñez, C., Suicide detection in Chile: Proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders (2017) Revista Brasileira de Psiquiatria, 39 (1), pp. 1-11. , https://doi.org/10.1590/1516-4446-2015-1877
dc.relation.referencesBarros, J., Morales, S., Echávarri, O., García, A., Ortega, J., Asahi, T., Moya, C., Núñez, C., Suicide detection in Chile: Proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders (2017) Revista Brasileira de Psiquiatria, 39 (1), pp. 1-11. , https://doi.org/10.1590/1516-4446-2015-1877
dc.relation.referencesCastro, H. M. L., (2005) REVISTA DE PSIQUIATRIA Y SALUD MENTAL HERMILIO VALDIZAN ESTIGMA Y ENFERMEDAD MENTAL: UN PUNTO DE VISTA HISTORICO-SOCIAL
dc.relation.referencesDinga, R., Marquand, A. F., Veltman, D. J., Beekman, A. T. F., Schoevers, R. A., van Hemert, A. M., Penninx, B. W. J. H., Schmaal, L., Predicting the naturalistic course of depression from a wide range of clinical, psychological, and biological data: a machine learning approach (2018) Translational Psychiatry, 8 (1). , https://doi.org/10.1038/s41398-018-0289-1
dc.relation.referencesGalatzer-Levy, I. R., Ma, S., Statnikov, A., Yehuda, R., Shalev, A. Y., Utilization of machine learning for prediction of post-traumatic stress: A re-examination of cortisol in the prediction and pathways to non-remitting PTSD (2017) Translational Psychiatry, 7 (3). , https://doi.org/10.1038/tp.2017.38
dc.relation.referencesIniesta, R., Malki, K., Maier, W., Rietschel, M., Mors, O., Hauser, J., Henigsberg, N., Uher, R., Combining clinical variables to optimize prediction of antidepressant treatment outcomes (2016) Journal of Psychiatric Research, 78, pp. 94-102. , https://doi.org/10.1016/j.jpsychires.2016.03.016
dc.relation.referencesIniesta, R., Malki, K., Maier, W., Rietschel, M., Mors, O., Hauser, J., Henigsberg, N., Uher, R., Combining clinical variables to optimize prediction of antidepressant treatment outcomes (2016) Journal of Psychiatric Research, 78, pp. 94-102. , https://doi.org/10.1016/j.jpsychires.2016.03.016
dc.relation.referencesJan, A., Meng, H., Gaus, Y. F. B. A., Zhang, F., Artificial Intelligent System for Automatic Depression Level Analysis Through Visual and Vocal Expressions (2018) IEEE Transactions on Cognitive and Developmental Systems, 10 (3), pp. 668-680. , https://doi.org/10.1109/TCDS.2017.2721552
dc.relation.referencesJin, H., Wu, S., di Capua, P., Development of a clinical forecasting model to predict comorbid depression among diabetes patients and an application in depression screening policy making (2015) Preventing Chronic Disease, 12 (9). , https://doi.org/10.5888/pcd12.150047
dc.relation.referencesKoutsouleris, N., Kambeitz-Ilankovic, L., Ruhrmann, S., Rosen, M., Ruef, A., Dwyer, D. B., Paolini, M., Borgwardt, S., Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or with Recent-Onset Depression: A Multimodal, Multisite Machine Learning Analysis (2018) JAMA Psychiatry, 75 (11), pp. 1156-1172. , https://doi.org/10.1001/jamapsychiatry.2018.2165
dc.relation.referencesKumar, S., Chong, I., Correlation analysis to identify the effective data in machine learning: Prediction of depressive disorder and emotion states (2018) International Journal of Environmental Research and Public Health, 15 (12). , https://doi.org/10.3390/ijerph15122907
dc.relation.referencesKumar, S., Chong, I., Correlation analysis to identify the effective data in machine learning: Prediction of depressive disorder and emotion states (2018) International Journal of Environmental Research and Public Health, 15 (12). , https://doi.org/10.3390/ijerph15122907
dc.relation.referencesLe, T. T., Fu, W., Moore, J. H., Scaling tree-based automated machine learning to biomedical big data with a feature set selector (2020) Bioinformatics, 36 (1), pp. 250-256. , https://doi.org/10.1093/bioinformatics/btz470
dc.relation.referencesOh, J., Yun, K., Hwang, J. H., Chae, J. H., Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales (2017) Frontiers in Psychiatry, 8. , https://doi.org/10.3389/fpsyt.2017.00192
dc.relation.referencesO’Halloran, R., Kopell, B. H., Sprooten, E., Goodman, W. K., Frangou, S., Multimodal neuroimaging-informed clinical applications in neuropsychiatric disorders (2016) Frontiers in Psychiatry, 7 (APR). , https://doi.org/10.3389/fpsyt.2016.00063
dc.relation.referencesPassos, I. C., Mwangi, B., Cao, B., Hamilton, J. E., Wu, M. J., Zhang, X. Y., Zunta-Soares, G. B., Soares, J. C., Identifying a clinical signature of suicidality among patients with mood disorders: A pilot study using a machine learning approach (2016) Journal of Affective Disorders, 193, pp. 109-116. , https://doi.org/10.1016/j.jad.2015.12.066
dc.relation.referencesPatel, M. J., Andreescu, C., Price, J. C., Edelman, K. L., Reynolds, C. F., Aizenstein, H. J., Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction (2015) International Journal of Geriatric Psychiatry, 30 (10), pp. 1056-1067. , https://doi.org/10.1002/gps.4262
dc.relation.referencesPérez Rave, J., (2012) Revisión Sistemática de Literatura en Ingeniería, , (Sello Editorial Universidad de Antioquia, Dic. 2012, ISBN: 978-958-714-543-4)
dc.relation.referencesPérez Rave, J., (2019) Revisión Sistemática de Literatura en Ingeniería, ampliada y actualizada, , (Sello Editorial IDINNOV, Dic. 2019, ISBN: 978-958-58897-6-7)
dc.relation.referencesRedlich, R., Opel, N., Grotegerd, D., Dohm, K., Zaremba, D., Burger, C., Munker, S., Dannlowski, U., Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data (2016) JAMA Psychiatry, 73 (6), pp. 557-564. , https://doi.org/10.1001/jamapsychiatry.2016.0316
dc.relation.referencesReps, J. M., Schuemie, M. J., Suchard, M. A., Ryan, P. B., Rijnbeek, P. R., Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data (2018) Journal of the American Medical Informatics Association, 25 (8), pp. 969-975. , https://doi.org/10.1093/jamia/ocy032
dc.relation.referencesReps, J. M., Schuemie, M. J., Suchard, M. A., Ryan, P. B., Rijnbeek, P. R., Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data (2018) Journal of the American Medical Informatics Association, 25 (8), pp. 969-975. , https://doi.org/10.1093/jamia/ocy032
dc.relation.referencesRyu, S., Lee, H., Lee, D. K., Park, K., Use of a machine learning algorithm to predict individuals with suicide ideation in the general population (2018) Psychiatry Investigation, 15 (11), pp. 1030-1036. , https://doi.org/10.30773/pi.2018.08.27
dc.relation.referencesSchnyer, D. M., Clasen, P. C., Gonzalez, C., Beevers, C. G., Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder (2017) Psychiatry Research-Neuroimaging, 264, pp. 1-9. , https://doi.org/10.1016/j.pscychresns.2017.03.003
dc.relation.referencesTran, T., Kavuluru, R., Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks (2017) Journal of Biomedical Informatics, 75, pp. S138-S148. , https://doi.org/10.1016/j.jbi.2017.06.010
dc.relation.referencesWahle, F., Kowatsch, T., Fleisch, E., Rufer, M., Weidt, S., Mobile sensing and support for people with depression: A pilot trial in the wild (2016) JMIR MHealth and UHealth, 4 (3). , https://doi.org/10.2196/mhealth.5960
dc.relation.referencesWeng, S. F., Reps, J., Kai, J., Garibaldi, J. M., Qureshi, N., Can Machine-learning improve cardiovascular risk prediction using routine clinical data? (2017) PLoS ONE, 12 (4). , https://doi.org/10.1371/journal.pone.0174944
dc.relation.referencesWu, M. J., Wu, H. E., Mwangi, B., Sanches, M., Selvaraj, S., Zunta-Soares, G. B., Soares, J. C., Prediction of pediatric unipolar depression using multiple neuromorphometric measurements: A pattern classification approach (2015) Journal of Psychiatric Research, 62, pp. 84-91. , https://doi.org/10.1016/j.jpsychires.2015.01.015
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/review
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record