REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistics applied to the prediction of mental illness: A systematic review [Estadística aplicada a la predicción de enfermedades mentales: Una revisión sistemática]

Thumbnail
Share this
Date
2021
Author
Castrillon S.O
Marín L.M.G
Villegas H.H.J
Escobar C.C.P.

Citación

       
TY - GEN T1 - Statistics applied to the prediction of mental illness: A systematic review [Estadística aplicada a la predicción de enfermedades mentales: Una revisión sistemática] Y1 - 2021 UR - http://hdl.handle.net/11407/7581 PB - Associacao Iberica de Sistemas e Tecnologias de Informacao AB - The main challenge for health insurers is to move from reactive to proactive management of their clients, that is, prioritize prevention and implementation of actions that favor health in its physical, mental, and social dimensions, and not only that mitigate the disease. This article presents a systematic review of the literature on the main machine learning methodologies that allow, through the prediction of mental illnesses, to carry out an early intervention. It was found that the main methodologies for this purpose are statistical models such as logistic regression and neural networks; and that the different indicators of neuroimaging and behavior in social networks become fundamental predictor variables when it comes to predicting mental illnesses. © 2021, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved. ER - @misc{11407_7581, author = {}, title = {Statistics applied to the prediction of mental illness: A systematic review [Estadística aplicada a la predicción de enfermedades mentales: Una revisión sistemática]}, year = {2021}, abstract = {The main challenge for health insurers is to move from reactive to proactive management of their clients, that is, prioritize prevention and implementation of actions that favor health in its physical, mental, and social dimensions, and not only that mitigate the disease. This article presents a systematic review of the literature on the main machine learning methodologies that allow, through the prediction of mental illnesses, to carry out an early intervention. It was found that the main methodologies for this purpose are statistical models such as logistic regression and neural networks; and that the different indicators of neuroimaging and behavior in social networks become fundamental predictor variables when it comes to predicting mental illnesses. © 2021, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.}, url = {http://hdl.handle.net/11407/7581} }RT Generic T1 Statistics applied to the prediction of mental illness: A systematic review [Estadística aplicada a la predicción de enfermedades mentales: Una revisión sistemática] YR 2021 LK http://hdl.handle.net/11407/7581 PB Associacao Iberica de Sistemas e Tecnologias de Informacao AB The main challenge for health insurers is to move from reactive to proactive management of their clients, that is, prioritize prevention and implementation of actions that favor health in its physical, mental, and social dimensions, and not only that mitigate the disease. This article presents a systematic review of the literature on the main machine learning methodologies that allow, through the prediction of mental illnesses, to carry out an early intervention. It was found that the main methodologies for this purpose are statistical models such as logistic regression and neural networks; and that the different indicators of neuroimaging and behavior in social networks become fundamental predictor variables when it comes to predicting mental illnesses. © 2021, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
The main challenge for health insurers is to move from reactive to proactive management of their clients, that is, prioritize prevention and implementation of actions that favor health in its physical, mental, and social dimensions, and not only that mitigate the disease. This article presents a systematic review of the literature on the main machine learning methodologies that allow, through the prediction of mental illnesses, to carry out an early intervention. It was found that the main methodologies for this purpose are statistical models such as logistic regression and neural networks; and that the different indicators of neuroimaging and behavior in social networks become fundamental predictor variables when it comes to predicting mental illnesses. © 2021, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.
URI
http://hdl.handle.net/11407/7581
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com