Show simple item record

dc.contributor.authorVega J
dc.contributor.authorPalomino-ángel S
dc.contributor.authorAnaya J.
dc.date.accessioned2022-09-14T14:34:09Z
dc.date.available2022-09-14T14:34:09Z
dc.date.created2022
dc.identifier.issn17946190
dc.identifier.urihttp://hdl.handle.net/11407/7582
dc.descriptionStructural attributes are fundamental biophysical parameters of forests, useful for environmental monitoring and plan-ning. Canopy height (CH) is an important input for estimating several biophysical parameters such as aboveground biomass and carbon stocks, and can be associated with forest degradation, deforestation, emission reduction. Thus, an accurate CH estimation is a crucial issue in climate change, helping to increase biomass estimation accuracy, and support REDD+ initiatives. Very-high-resolution (VHR) imagery from unmanned aircraft systems (UAS’s) have been studied as a low cost means for CH estimation at local scales, however, estimation the accuracy is a factor that deter-mines its effectiveness. We evaluated the ability of VHR imagery from UAS’s to derive structural attributes, specifically tree-crown area and height, in a tropical forest fragment located in the foothills of the Andes, in the humid tropical forests of the region known as Biogeographic Chocó in Colombia South America. We used a structure from motion (SfM) approach to derive the forest fragment’s CH, and we applied mean-shift algorithms to identify single tree crowns. We performed accuracy assessment using tree height derived from field campaigns and visual interpretation of VHR imagery. Results showed a RMSE of 3.6 m of the canopy height model (CHM) with a R2 = 0.75; the total accuracy for delineating tree crowns was 73.9%. We found that using VHR imagery collected by UASs, specific trees and canopy gaps can be identified in forest fragments, which is an important step to determine forest structure. © 2022, Universidad Nacional de Colombia. All rights reserved.eng
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85130422425&doi=10.15446%2fesrj.v26n1.95405&partnerID=40&md5=624654251aff5e4b755cac98f839c44d
dc.sourceEarth Sciences Research Journal
dc.titleStructural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems [Estimación de atributos estructurales en un fragmento de bosque tropical natural utilizando imágenes de muy alta resolución obtenidas con sistemas aéreos no tripulados]
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.publisher.programIngeniería Civil
dc.type.spaArtículo
dc.identifier.doi10.15446/esrj.v26n1.95405
dc.subject.keywordCanopy Height Models (CHM)eng
dc.subject.keywordCrown delineationeng
dc.subject.keywordForest heighteng
dc.subject.keywordREDD+eng
dc.subject.keywordUAS imageryeng
dc.relation.citationvolume26
dc.relation.citationissue1
dc.relation.citationstartpage1
dc.relation.citationendpage12
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationVega, J., Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia
dc.affiliationPalomino-ángel, S., Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia, Facultad de Ingeniería, Universidad de San Buenaventura, Medellín, Colombia
dc.affiliationAnaya, J., Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesAnaya, J. A., (2015) Incendios en Colombia y estimación de emisión de gases efecto invernadero por quema de biomasa: una aproximación desde la teledetección, , Editorial Universidad de Medellín. ISBN 978-958-8922-01-0. 167pp
dc.relation.referencesAnaya, J. A., Escobar-Martínez, J. F., Massone, H., Booman, G., Quiroz-Londoño, O. M., Cañón-Barriga, C. C., Montoya-Jaramillo, L. J., Palomino-Ángel, S., Identification of wetland areas in the context of agricultural development using Remote Sensing and GIS (2017) DYNA, 84, p. 186. , https://doi.org/10.15446/dyna.v84n201.58600
dc.relation.referencesAnaya, J. A., Gutiérrez-Vélez, V. H., Pacheco-Pascagaza, A. M., Palomino-Ángel, S., Han, N., Balzter, H., Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia (2020) Remote Sensing, 12, pp. 1-16. , ht-tps://doi.org/10.3390/RS12081235
dc.relation.referencesBarnes, C., Balzter, H., Barrett, K., Eddy, J., Milner, S., Suárez, J.C., Individual tree crown delineation from airborne laser scanning for disea-sed larch forest stands (2017) Remote Sensing, 9, p. 231. , https://doi.org/10.3390/rs9030231
dc.relation.referencesBay, H., Tuytelaars, T., Van Gool, L., SURF: Speeded Up Robust Features (2006) Computer Vision – ECCV 2006. Lecture Notes in Computer Science, 3951. , https://doi.org/10.1007/11744023_32, Leonardis, B. H. A. (Ed). Springer, Berlin, Heidelberg
dc.relation.referencesBergen, K. M., Goetz, S. J., Dubayah, R. O., Henebry, G. M., Hunsaker, C. T., Imhoff, M. L., Nelson, R. F., Radeloff, V. C., Remote sensing of vegetation 3‐D structure for biodiversity and habi-tat: review and implications for lidar and radar spaceborne missions (2009) Journal of Geophysical Research. Biogeosciences, 114. , https://doi.or-g/10.1029/2008JG000883
dc.relation.referencesBispo, P. D. C., Pardini, M., Papathanassiou, K. P., Kugler, F., Balzter, H., Rains, D., Araujo, L. S., Mapping forest successional stages in the Bra-zilian Amazon using forest heights derived from TanDEM-X SAR in-terferometry (2019) Remote Sensing of Environment, 232, p. 111194. , https://doi.org/10.1016/j.rse.2019.05.013
dc.relation.referencesBonnet, S., Lisein, J., Lejeune, P., Comparison of UAS photogrammetric products for tree detection and characterization of coniferous stands (2017) International Journal of Remote Sensing, 38, pp. 5310-5337. , https://doi.org/10.1080/01431161.2017.1338839
dc.relation.referencesBonnet, S., Toromanoff, F., Bauwens, S., Michez, A., Dedry, L., Lejeune, P., Principes de base de la télédétection et ses potentialités comme outil de caractérisation de la ressource forestière–II. LiDAR aérien (2013) Forêt Wallonne, pp. 28-41
dc.relation.referencesCamacho, V. B., Díaz, R. G., Mangrove Economy: etho-politics and social change (2018) Entramado, 14, pp. 104-110. , https://doi.org/10.18041/entra-mado.2018v14n1.27156
dc.relation.referencesChiabrando, F., Donadio, E., Rinaudo, F., SfM for orthophoto genera-tion: A winning approach for cultural heritage knowledge (2015) The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, pp. 91-98. , https://doi.org/10.5194/isprsarchives-XL-5-W7-91-2015, Taipei
dc.relation.referencesChianucci, F., Disperati, L., Guzzi, D., Bianchini, D., Nardino, V., Lastri, C., Rindinella, A., Corona, P., Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV (2016) International Journal of Applied Earth Observation and Geoinfor-mation, 47, pp. 60-68. , https://doi.org/10.1016/j.jag.2015.12.005
dc.relation.referencesClinton, N., Holt, A., Scarborough, J., Yan, L., Gong, P., Accuracy Assessment Measures for Object-based Image Segmentation Goodness (2010) Photogrammetric Engineering & Remote Sensing, 76 (3), pp. 289-299. , ht-tps://doi.org/10.14358/PERS.76.3.289
dc.relation.referencesDandois, J. P., Ellis, E. C., High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision (2013) Remote Sensing Environment, 136, pp. 259-276. , https://doi.org/10.1016/J.RSE.2013.04.005
dc.relation.referencesDandois, J. P., Olano, M., Ellis, E. C., Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure (2015) Remote Sensing, 7, pp. 13895-13920. , https://doi.org/10.3390/rs71013895
dc.relation.referencesDrauschke, M., Bartelsen, J., Reidelstuerz, P., Towards UAV-based forest monitoring (2014) Proceedings of the Workshop on UAV-Based Remote Sensing Methods for Monitoring Vegetation, pp. 21-32. , Geographisches Institut Der Universität Zu Köln—Kölner Geographische Arbeiten. Cologne, Germany
dc.relation.referencesEne, L., Næsset, E., Gobakken, T., Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates (2012) International Journal of Remote Sensing, 33, pp. 5171-5193. , https://doi.org/10.1080/01431161.2012.657363
dc.relation.referencesFagua, J. C., Ramsey, R., Geospatial modeling of land cover change in the Chocó-Darien global ecoregion of South America
dc.relation.referencesOne of most biodiverse and rainy areas in the world (2019) PLoS One, 14, pp. 1-25. , https://doi.org/10.1371/journal.pone.0211324
dc.relation.referencesGaleano, G., Forest use at the Pacific Coast of Choco, Colombia: A quanti-tative approach (2000) Economic Botany, 54, pp. 358-376. , https://doi.org/10.1007/BF02864787
dc.relation.referencesGaleano, G., Suárez, S., Balslev, H., Vascular plant species count in a wet forest in the Choco area on the Pacific coast of Colombia (1998) Biodiversity & Conservation, 7, pp. 1563-1575. , https://doi.org/10.1023/A:1008802624275
dc.relation.referencesGiannetti, F., Chirici, G., Gobakken, T., Næsset, E., Travaglini, D., Puliti, S., A new approach with DTM-independent metrics for forest growing stock prediction using UAV photogrammetric data (2018) Remo-te Sensing of Environment, 213, pp. 195-205. , https://doi.org/10.1016/j.rse.2018.05.016
dc.relation.referencesGentry, A. H., Species richness and floristic composition of Chocó regioplant (1986) Caldasia, 15, pp. 71-91
dc.relation.referencesGleason, C. J., Jungho, I., A fusion approach for tree crown delineation from Lidar data (2012) Photogrammetric Engineering and Remote Sensing, 78, pp. 679-692. , https://doi.org/10.14358/PERS.78.7.679
dc.relation.references(2017) A Sourcebook of Methods and Procedures for Monitoring Essential Biodiversity Variables in Tropical Forests with Remote Sensing, , GOFC-GOLD Eds: GOFCGOLD & GEO BON. Report version UNCBD COP-13, GO-FC-GOLD Land Cover Project Office, Wageningen University, The Ne-therlands. ISSN: 2542-6729
dc.relation.referencesGougeon, F., Leckie, D., (2003) Forest information extraction from high spatial resolution images using an individual tree crown approach, , Pacific Fores-try Centre. Victoria, British Columbia. Information Report BC-X-396. ISSN 0830-0453. ISBN 0-662-33272-5
dc.relation.referencesGougeon, F. A., A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images (1995) Canadian Journal of Remote Sensing, 21, pp. 274-284. , https://doi.org/10.1080/07038992.1995.10874622
dc.relation.referencesHansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavi-na, A., Thau, D., Townshend, J. R. G., Hi-gh-Resolution Global Maps of 21st-Century Forest Cover Change (2013) Science, 342 (80), pp. 850-853. , https://doi.org/10.1126/science.1244693
dc.relation.referencesHe, Z., Fan, B., Cheng, T. C. E., Wang, S.-Y., Tan, C.-H., A mean-shift algorithm for large-scale planar maximal covering location problems (2016) European Journal of Operational Research, 250, pp. 65-76. , https://doi.org/10.1016/J.EJOR.2015.09.006
dc.relation.referencesHuang, X., Zhang, L., An Adaptive Mean-Shift Analysis Approach for Object Extraction and Classification From Urban Hyperspectral Imagery (2008) IEEE Transactions on Geoscience and Remote Sensing, 46, pp. 4173-4185. , ht-tps://doi.org/10.1109/TGRS.2008.2002577
dc.relation.referencesJoshi, N. P., Mitchard, E. T. A., Schumacher, J., Johannsen, V. K., Saatchi, S., Fens-holt, R., L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark (2015) Remote Sensing, 7 (4), pp. 4442-4472. , http://doi.org/10.3390/rs70404442
dc.relation.referencesKadmon, R., Harari-Kremer, R., Studying Long-Term Vegetation Dynamics Using Digital Processing of Historical Aerial Photographs (1999) Remote Sensing of Environment, 68, pp. 164-176. , https://doi.org/10.1016/S0034-4257(98)00109-6
dc.relation.referencesKaiser, A., Neugirg, F., Rock, G., Müller, C., Haas, F., Ries, J., Schmidt, J., Small-Scale Surface Reconstruction and Volume Calculation of Soil Erosion in Complex Moroccan Gully Morphology Using Structure from Mo-tion (2014) Remote Sensing, 6, pp. 7050-7080. , https://doi.org/10.3390/rs6087050
dc.relation.referencesKe, Y., Quackenbush, L. J., A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing (2011) International Journal of Remote Sensing, 32, pp. 4725-4747. , https://doi.org/10.1080/01431161.2010.494184
dc.relation.referencesKellndorfer, J., Walker, W., Pierce, L., Dobson, C., Fites, J. A., Hunsaker, C., Clut-ter, M., Vegetation height estimation from Shuttle Radar Topogra-phy Mission and National Elevation Datasets (2004) Remote Sensing of Environ-ment, 93 (3), pp. 339-358. , http://doi.org/10.1016/j.rse.2004.07.017
dc.relation.referencesKomárek, J., Klouček, T., Prošek, J., The potential of Unmanned Aerial Systems: A tool towards precision classification of hard-to-distinguish vegetation types? (2018) International Journal of Applied Earth Observation and Geoinformation, 71, pp. 9-19. , https://doi.org/10.1016/j.jag.2018.05.003
dc.relation.referencesKugler, F., Schulze, D., Hajnsek, I., Pretzsch, H., Papathanassiou, K. P., TanDEM-X Pol-InSAR performance for forest height estimation (2014) IEEE Transactions on Geoscience and Remote Sensing, 52, pp. 6404-6422. , https://doi.org/10.1109/TGRS.2013.2296533
dc.relation.referencesKumar, S., Khati, G., Chandola, S., Agrawal, S., Kushwaha, S., Polarime-tric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest (2017) Advances in Space Re-search, 60 (3), pp. 571-586. , https://doi.org/10.1016/j.asr.2017.04.018
dc.relation.referencesLavalle, M., Hensley, S., Extraction of Structural and Dynamic Proper-ties of Forests from Polarimetric-Interferometric SAR Data Affected by Temporal Decorrelation (2015) IEEE Transactions on Geoscience and Remote Sensing, 53 (9), pp. 4752-4767. , http://doi.org/10.1109/TGRS.2015.2409066
dc.relation.referencesLeckie, D., Gougeon, F., Hill, D., Quinn, R., Armstrong, L., Shreenan, R., Combined high-density lidar and multispectral imagery for individual tree crown analysis (2003) Canadian Journal of Remote Sensing, 29, pp. 633-649. , https://doi.org/10.5589/m03-024
dc.relation.referencesLee, S. K., Fatoyinbo, T. E., TanDEM-X Pol-InSAR Inversion for Mangrove Canopy Height Estimation (2015) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (7), pp. 3608-3618. , http://doi.org/10.1109/JSTARS.2015.2431646
dc.relation.referencesLisein, J., Pierrot-Deseilligny, M., Bonnet, S., Lejeune, P., A Photogram-metric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery (2013) Forests, 4, pp. 922-944. , https://doi.org/10.3390/f4040922
dc.relation.referencesLiu, Y., Bian, L., Meng, Y., Wang, H., Zhang, S., Yang, Y., Shao, X., Wang, B., Discrepancy measures for selecting optimal combination of pa-rameter values in object-based image analysis (2012) ISPRS Journal of Photo-grammetry and Remote Sensing, 68, pp. 144-156. , https://doi.org/10.1016/J.ISPRSJPRS.2012.01.007
dc.relation.referencesLowe, D. G., Distinctive Image Features from Scale-Invariant Keypoints (2004) International Journal of Computer Vision, 60, pp. 91-110. , https://doi.or-g/10.1023/B:VISI.0000029664.99615.94
dc.relation.referencesMarpu, P. R., Neubert, M., Herold, H., Niemeyer, I., Enhanced evaluation of image segmentation results (2010) Journal of Spatial Science, 55, pp. 55-68. , ht-tps://doi.org/10.1080/14498596.2010.487850
dc.relation.referencesMatsumoto, H., Ohtani, M., Washitani, I., Tree Crown Size Estimated Using Image Processing: A Biodiversity Index for Sloping Subtropical Broad-Leaved Forests (2017) Tropical Conservation Science, 10. , https://doi.org/10.1177/1940082917721787
dc.relation.referencesMeyer, V., Saatchi, S., Ferraz, A., Xu, L., Duque, A., García, M., Chave, J., Forest degradation and biomass loss along the Chocó region of Colom-bia (2019) Carbon Balance and Management, 14, pp. 1-15. , https://doi.org/10.1186/s13021-019-0117-9
dc.relation.referencesMichez, A., Piégay, H., Jonathan, L., Claessens, H., Lejeune, P., Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery (2016) International Journal of Applied Earth Observation and Geoinformation, 44, pp. 88-94. , https://doi.org/10.1016/J.JAG.2015.06.014
dc.relation.referencesMielcarek, M., Stereńczak, K., Khosravipour, A., Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation (2018) International Journal of Applied Earth Observation and Geoinformation, 71, pp. 132-143. , https://doi.org/10.1016/j.jag.2018.05.002
dc.relation.references(2014) Quinto Informe Nacional de la Biodiversidad de Colombia ante el Convenio de Diversidad Biológica, p. 101. , Ministerio de Ambiente y Desarrollo Sostenible (MADS), & Programa Naciones Unidas para el Desarrollo (PNUD). Bogotá D.C., Colombia
dc.relation.referencesMiraki, M., Sohrabi, H., Fatehi, P., Kneubuehler, M., Individual tree crown delineation from high-resolution UAV images in broadleaf forest (2021) Ecological Informatics, 61, p. 101207. , https://doi.org/10.1016/j.ecoinf.2020.101207, ISSN 1574-9541
dc.relation.referencesMöller, M., Lymburner, L., Volk, M., The comparison index: A tool for assessing the accuracy of image segmentation (2007) International Journal of Applied Earth Observation and Geoinformation, 9, pp. 311-321. , https://doi.org/10.1016/j.jag.2006.10.002
dc.relation.referencesMontaghi, A., Larsen, R., Greve, M. H., Accuracy assessment measures for image segmentation goodness of the land parcel identification system (LPIS) in Denmark (2013) Remote Sensing Letters, 4, pp. 946-955. , https://doi.or-g/10.1080/2150704X.2013.817709
dc.relation.referencesMyers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403, pp. 853-858. , https://doi.org/10.1038/35002501
dc.relation.referencesNikolakopoulos, K. G., Soura, K., Koukouvelas, I. K., Argyropoulos, N. G., UAV vs classical aerial photogrammetry for archaeological stu-dies (2017) Journal of Archaeological Science: Reports, 14, pp. 758-773. , https://doi.org/10.1016/j.jasrep.2016.09.004
dc.relation.referencesNovotny, J., Hanus, J., Lukes, P., Kaplan, V., Individual tree crowns delineation using Local Maxima approach and seeded region growing technique (2011) Proceedings of Symposium GIS Ostrava, pp. 27-39
dc.relation.referencesOlson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’Amico, J. A., Kassem, K. R., Terrestrial ecore-gions of the world: A new map of life on Earth (2001) Bioscience, 51, pp. 933-938. , https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
dc.relation.referencesOta, T., Ogawa, M., Mizoue, N., Fukumoto, K., Yoshida, S., Forest Structure Estimation from a UAV-Based Photogrammetric Point Cloud in Managed Temperate Coniferous Forests (2017) Forests, 8 (9), p. 343. , https://doi.org/10.3390/f8090343
dc.relation.references(2018) Orfeo Toolbox [www Document], , https://www.orfeo-toolbox.org/, Orfeo Toolbox. (accessed 4.19.18)
dc.relation.referencesPan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Hayes, D., A large and persistent carbon sink in the world’s forests (2011) Science, 333 (80), pp. 988-993. , https://doi.org/10.1126/science.1201609
dc.relation.referencesPanagiotidis, D., Abdollahnejad, A., Surový, P., Chiteculo, V., Determining tree height and crown diameter from high-resolution UAV imagery (2016) International Journal of Remote Sensing, pp. 1-19. , https://doi.org/10.1080/01431161.2016.1264028
dc.relation.referencesPaneque-Gálvez, J., McCall, M. K., Napoletano, B. M., Wich, S., Koh, L. P., Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas (2014) Forests, 5, pp. 1481-1507. , ht-tps://doi.org/10.3390/f5061481
dc.relation.referencesPatino, J. E., Estupinan-Suarez, L., Hotspots of Wetland Area Loss in Colombia (2016) Wetlands, 36, pp. 935-943. , https://doi.org/10.1007/s13157-016-0806-z
dc.relation.referencesPineux, N., Lisein, J., Swerts, G., Bielders, C. L., Lejeune, P., Colinet, G., Degré, A., Can DEM time series produced by UAV be used to quantify di-ffuse erosion in an agricultural watershed? (2017) Geomorphology, 280, pp. 122-136. , https://doi.org/10.1016/J.GEOMORPH.2016.12.003
dc.relation.referencesPouliot, D., King, D. J., Bell, F. W., Pitt, D. G., Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration (2002) Remote Sensing of Environment, 82, pp. 322-334. , https://doi.org/10.1016/S0034-4257(02)00050-0
dc.relation.referencesPuliti, S., Ørka, H., Gobakken, T., Næsset, E., Inventory of Small Forest Areas Using an Unmanned Aerial System (2015) Remote Sensing, 7, pp. 9632-9654. , https://doi.org/10.3390/rs70809632
dc.relation.referencesQiu, L., Jing, L., Hu, B., Li, H., Tang, Y., A new individual tree crown delineation method for high resolution multispectral imagery (2020) Remote Sensing, 12, pp. 1-21. , https://doi.org/10.3390/rs12030585
dc.relation.referencesRutishauser, E., Noor’an, F., Laumonier, Y., Halperin, J., Rufi’ie, Hergoualc’h, K., Verchot, L., Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia (2013) Forest Ecology Mana-gement, 307, pp. 219-225. , https://doi.org/10.1016/j.foreco.2013.07.013
dc.relation.referencesSasaki, N., Asner, G. P., Knorr, W., Durst, P. B., Priyadi, H. R., Putz, F. E., Approaches to classifying and restoring degraded tropical forests for the anticipated REDD+ climate change mitigation mechanism (2011) IForest, 4, pp. 1-6. , https://doi.org/10.3832/ifor0556-004
dc.relation.referencesSierra, C. A., del Valle, J. I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., Colorado, G. J., Benjumea, J. F., Total carbon stocks in a tropical forest landscape of the Porce region, Colombia (2007) Forest Ecology and Management, 243, pp. 299-309. , https://doi.org/10.1016/j.foreco.2007.03.026
dc.relation.referencesSingh, M., Evans, D., Tan, B. S., Nin, C. S., Mapping and Characteri-zing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data (2015) PLoS One, 11 (4), p. e0121558. , https://doi.org/10.1371/journal.pone.0121558
dc.relation.referencesSolberg, S., Naesset, E., Bollandsas, O. M., Single Tree Segmentation Using Airborne Laser Scanner Data in a Structurally Heterogeneous Spruce Forest (2006) Photogrammetric Engineering & Remote Sensing, 72, pp. 1369-1378. , https://doi.org/10.14358/PERS.72.12.1369
dc.relation.referencesSteinmann, K., Mandallaz, D., Ginzler, C., Lanz, A., Small area estimations of proportion of forest and timber volume combining Lidar data and stereo aerial images with terrestrial data (2013) Scandinavian Journal of Forest Research, 28, pp. 373-385. , https://doi.org/10.1080/02827581.2012.754936
dc.relation.referencesSwinfield, T., Lindsell, J. A., Williams, J. V., Harrison, R. D., Habibi, A., Gemita, E., Schönlieb, C. B., Coomes, D. A., Accurate Measurement of Tropical Forest Canopy Heights and Aboveground Carbon Using Structure From Motion (2019) Remote Sensing, 11 (8), p. 928. , https://doi.org/10.3390/rs11080928
dc.relation.referencesvan der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Ro-gers, B. M., Mu, M., Kasibhatla, P. S., Global fire emissions estimates during 1997–2016 (2017) Earth System Science Data, 9, pp. 697-720. , https://doi.org/10.5194/essd-9-697-2017
dc.relation.references(2017) Survey of territoriaffected by illicit crops – 2016, , ISSN-2011-0596
dc.relation.referencesWagner, F. H., Ferreira, M. P., Sanchez, A., Hirye, M. C. M., Zortea, M., Gloor, E., Phillips, O. L., Aragão, L. E. O. C., Individual tree crown delineation in a highly diverse tropical forest using very high-resolution satellite images (2018) ISPRS Journal of Photo-grammetry and Remote Sensing, 145, pp. 362-377. , https://doi.org/10.1016/j.isprsjprs.2018.09.013
dc.relation.referencesWeidner, U., Contribution to the assessment of segmentation quality for remote sensing applications (2008) The International Archives of the Photogram-metry, Remote Sensing and Spatial Information Sciences, 37, pp. 479-484. , (Part B7)
dc.relation.referencesWhite, J., Wulder, M., Vastaranta, M., Coops, N., Pitt, D., Woods, M., The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning (2013) Forests, 4, pp. 518-536. , https://doi.org/10.3390/f4030518
dc.relation.referencesWhitehead, K., Hugenholtz, C. H., Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: a review of progress and challenges (2014) Journal of Unmanned Vehicle Systems, 2, pp. 69-85. , https://doi.org/10.1139/juvs-2014-0006
dc.relation.references(2008) Plan de Acción del Complejo Ecorregional Chocó-Da-rién, , ISBN: 978-958-8353-04-3
dc.relation.referencesZarco-Tejada, P. J., Diaz-Varela, R., Angileri, V., Loudjani, P., Tree height quantification using very high-resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruc-tion methods (2014) European Journal of Agronomy, 55, pp. 89-99. , https://doi.or-g/10.1016/J.EJA.2014.01.004
dc.relation.referencesZou, Z., Lin, X., Geoinformatics production for urban disasters risk reduction: A zero cost solution (2013) Communications in Computer and Information Science, pp. 313-324. , https://doi.org/10.1007/978-3-642-45025-9_32
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record