dc.contributor.author | Valdés-Tresanco M.S | |
dc.contributor.author | Molina-Zapata A | |
dc.contributor.author | Pose A.G | |
dc.contributor.author | Moreno E. | |
dc.date.accessioned | 2022-09-14T14:34:09Z | |
dc.date.available | 2022-09-14T14:34:09Z | |
dc.date.created | 2022 | |
dc.identifier.issn | 14203049 | |
dc.identifier.uri | http://hdl.handle.net/11407/7583 | |
dc.description | Single domain antibodies from camelids, or nanobodies, are a unique class of antibody fragments with several advantageous characteristics: small monomeric size, high stability and solubility and easy tailoring for multiple applications. Nanobodies are gaining increasing acceptance as diagnostic tools and promising therapeutic agents in cancer and other diseases. While most nanobodies are obtained from immunized animals of the camelid family, a few synthetic nanobody libraries constructed in recent years have shown the capability of generating high quality nanobodies in terms of affinity and stability. Since this synthetic approach has important advantages over the use of animals, the recent advances are indeed encouraging. Here we review over a dozen synthetic nanobody libraries reported so far and discuss the different approaches followed in their construction and validation, with an emphasis on framework and hypervariable loop design as critical issues defining their potential as high-class nanobody sources. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. | eng |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127879154&doi=10.3390%2fmolecules27072198&partnerID=40&md5=500fd71e9664896d28605a8d04237e7b | |
dc.source | Molecules | |
dc.title | Structural Insights into the Design of Synthetic Nanobody Libraries | |
dc.type | Review | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | |
dc.type.spa | Revisión | |
dc.identifier.doi | 10.3390/molecules27072198 | |
dc.subject.keyword | Nanobody | eng |
dc.subject.keyword | Phage display | eng |
dc.subject.keyword | Rational design | eng |
dc.subject.keyword | Ribosome display | eng |
dc.subject.keyword | Synthetic library | eng |
dc.relation.citationvolume | 27 | |
dc.relation.citationissue | 7 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Valdés-Tresanco, M.S., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.affiliation | Molina-Zapata, A., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia, Grupo de Micología Médica y Experimental, Corporación para Investigaciones Biológicas (CIB), Medellin, 050034, Colombia | |
dc.affiliation | Pose, A.G., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.affiliation | Moreno, E., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.relation.references | Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammers, C., Songa, E.B., Bendahman, N., Hammers, R., Naturally Occurring Antibodies Devoid of Light Chains (1993) Nature, 363, pp. 446-448. , [CrossRef] | |
dc.relation.references | Morrison, C., Nanobody Approval Gives Domain Antibodies a Boost. Nature reviews (2019) Drug Discov, 18, pp. 485-487. , [CrossRef] [PubMed] | |
dc.relation.references | Raybould, M.I.J., Kovaltsuk, A., Marks, C., Deane, C.M., CoV-AbDab: The Coronavirus Antibody Database (2021) Bioinformatics, 37, pp. 734-735. , [CrossRef] [PubMed] | |
dc.relation.references | Zare, H., Aghamollaei, H., Hosseindokht, M., Heiat, M., Razei, A., Bakherad, H., Nanobodies, the Potent Agents to Detect and Treat the Coronavirus Infections: A Systematic Review (2021) Mol. Cell. Probes, 55, p. 101692. , [CrossRef] | |
dc.relation.references | Muyldermans, S., Nanobodies: Natural Single-Domain Antibodies (2013) Annu. Rev. Biochem, 82, pp. 775-797. , [CrossRef] | |
dc.relation.references | Steeland, S., Vandenbroucke, R.E., Libert, C., Nanobodies as Therapeutics: Big Opportunities for Small Antibodies (2016) Drug Discov. Today, 21, pp. 1076-1113. , [CrossRef] | |
dc.relation.references | Muyldermans, S., A Guide to: Generation and Design of Nanobodies (2021) FEBS J, 288, p. 2084. , [CrossRef] | |
dc.relation.references | Goldman, E.R., Andersen, G.P., Liu, J.L., Delehanty, J.B., Sherwood, L.J., Osborn, L.E., Cummins, L.B., Hayhurst, A., Facile Generation of Heat-Stable Antiviral and Antitoxin Single Domain Antibodies from a Semisynthetic Llama Library (2006) Anal. Chem, 78, pp. 8245-8255. , [CrossRef] | |
dc.relation.references | Könning, D., Rhiel, L., Empting, M., Grzeschik, J., Sellmann, C., Schröter, C., Zielonka, S., Yanakieva, D., Semi-Synthetic VNAR Libraries Screened against Therapeutic Antibodies Primarily Deliver Anti-Idiotypic Binders (2017) Sci. Rep, 7, p. 9676. , [CrossRef] | |
dc.relation.references | Liu, J.L., Anderson, G.P., Goldman, E.R., Isolation of Anti-Toxin Single Domain Antibodies from a Semi-Synthetic Spiny Dogfish Shark Display Library (2007) BMC Biotechnol, 7, p. 78. , [CrossRef] [PubMed] | |
dc.relation.references | Grzeschik, J., Könning, D., Hinz, S.C., Krah, S., Schröter, C., Empting, M., Kolmar, H., Zielonka, S., Generation of Semi-Synthetic Shark IgNAR Single-Domain Antibody Libraries (2018) Methods Mol. Biol, 1701, pp. 147-167. , [CrossRef] [PubMed] | |
dc.relation.references | Moutel, S., Bery, N., Bernard, V., Keller, L., Lemesre, E., de Marco, A., Ligat, L., Olichon, A., NaLi-H1: A Universal Synthetic Library of Humanized Nanobodies Providing Highly Functional Antibodies and Intrabodies (2016) eLife, 5, pp. 1-31. , [CrossRef] [PubMed] | |
dc.relation.references | McMahon, C., Baier, A.S., Pascolutti, R., Wegrecki, M., Zheng, S., Ong, J.X., Erlandson, S.C., Ring, A.M., Yeast Surface Display Platform for Rapid Discovery of Conformationally Selective Nanobodies (2018) Nat. Struct. Mol. Biol, 25, pp. 289-296. , [CrossRef] [PubMed] | |
dc.relation.references | Zimmermann, I., Egloff, P., Hutter, C.A.J., Arnold, F.M., Stohler, P., Bocquet, N., Hug, M.N., Hetemann, L., Synthetic Single Domain Antibodies for the Conformational Trapping of Membrane Proteins (2018) eLife, 7, p. e34317. , [CrossRef] [PubMed] | |
dc.relation.references | Chen, X., Gentili, M., Hacohen, N., Regev, A., A Cell-Free Nanobody Engineering Platform Rapidly Generates SARS-CoV-2 Neutralizing Nanobodies (2021) Nat. Commun, 12, pp. 1-14. , [CrossRef] | |
dc.relation.references | Yan, J., Li, G., Hu, Y., Ou, W., Wan, Y., Construction of a Synthetic Phage-Displayed Nanobody Library with CDR3 Regions Randomized by Trinucleotide Cassettes for Diagnostic Applications (2014) J. Transl. Med, 12, pp. 1-12. , [CrossRef] | |
dc.relation.references | Sevy, A.M., Chen, M.T., Castor, M., Sylvia, T., Krishnamurthy, H., Ishchenko, A., Hsieh, C.M., Structure-and Sequence-Based Design of Synthetic Single-Domain Antibody Libraries (2020) Protein Eng. Des. Sel. PEDS, 33, pp. 1-13. , [CrossRef] [PubMed] | |
dc.relation.references | Zhao, Y., Wang, Y., Su, W., Li, S., Construction of Synthetic Nanobody Library in Mammalian Cells by DsDNA-Based Strategies (2021) ChemBioChem, 22, pp. 2957-2965. , [CrossRef] [PubMed] | |
dc.relation.references | Wagner, H.J., Wehrle, S., Weiss, E., Cavallari, M., Weber, W., A Two-Step Approach for the Design and Generation of Nanobodies (2018) Int. J. Mol. Sci, 19, p. 3444. , [CrossRef] | |
dc.relation.references | Chi, X., Liu, X., Wang, C., Zhang, X., Li, X., Hou, J., Ren, L., Yang, W., Humanized Single Domain Antibodies Neutralize SARS-CoV-2 by Targeting the Spike Receptor Binding Domain (2020) Nat. Commun, 11, pp. 1-7. , [CrossRef] | |
dc.relation.references | Ferrari, D., Garrapa, V., Locatelli, M., Bolchi, A., A Novel Nanobody Scaffold Optimized for Bacterial Expression and Suitable for the Construction of Ribosome Display Libraries (2020) Mol. Biotechnol, 62, pp. 43-55. , [CrossRef] | |
dc.relation.references | Stefan, M.A., Light, Y.K., Schwedler, J.L., McIlroy, P.R., Courtney, C.M., Saada, E.A., Thatcher, C.E., Mageeney, C.M., Development of Potent and Effective Synthetic SARS-CoV-2 Neutralizing Nanobodies (2021) mAbs, 13, p. 442911. , [CrossRef] [PubMed] | |
dc.relation.references | Wei, G., Meng, W., Guo, H., Pan, W., Liu, J., Peng, T., Chen, L., Chen, C.Y., Potent Neutralization of Influenza A Virus by a Single-Domain Antibody Blocking M2 Ion Channel Protein (2011) PLoS ONE, 6, p. e28309. , [CrossRef] | |
dc.relation.references | Saerens, D., Pellis, M., Loris, R., Pardon, E., Dumoulin, M., Matagne, A., Wyns, L., Conrath, K., Identification of a Universal VHH Framework to Graft Non-Canonical Antigen-Binding Loops of Camel Single-Domain Antibodies (2005) J. Mol. Biol, 352, pp. 597-607. , [CrossRef] | |
dc.relation.references | Conrath, K.E., Lauwereys, M., Galleni, M., Matagne, A., Frère, J.-M., Kinne, J., Wyns, L., Muyldermans, S., β-Lactamase Inhibitors Derived from Single-Domain Antibody Fragments Elicited in the Camelidae (2001) Antimicrob. Agents Chemother, 45, p. 2807. , [CrossRef] | |
dc.relation.references | Turner, K.B., Zabetakis, D., Goldman, E.R., Anderson, G.P., Enhanced Stabilization of a Stable Single Domain Antibody for SEB Toxin by Random Mutagenesis and Stringent Selection (2014) Protein Eng. Des. Sel, 27, pp. 89-95. , [CrossRef] | |
dc.relation.references | Goldman, E.R., Liu, J.L., Zabetakis, D., Anderson, G.P., Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview (2017) Front. Immunol, 8, p. 1. , [CrossRef] | |
dc.relation.references | Liu, J.L., Shriver-Lake, L.C., Anderson, G.P., Zabetakis, D., Goldman, E.R., Selection, Characterization, and Thermal Stabilization of Llama Single Domain Antibodies towards Ebola Virus Glycoprotein (2017) Microb. Cell Factories, 16, p. 223. , [CrossRef] | |
dc.relation.references | Zabetakis, D., Shriver-Lake, L.C., Olson, M.A., Goldman, E.R., Anderson, G.P., Experimental Evaluation of Single-Domain Antibodies Predicted by Molecular Dynamics Simulations to Have Elevated Thermal Stability (2019) Protein Sci, 28, pp. 1909-1912. , [CrossRef] [PubMed] | |
dc.relation.references | Liu, J.L., Goldman, E.R., Zabetakis, D., Walper, S.A., Turner, K.B., Shriver-Lake, L.C., Anderson, G.P., Enhanced Production of a Single Domain Antibody with an Engineered Stabilizing Extra Disulfide Bond (2015) Microb Cell Fact, 14, p. 158. , [CrossRef] [PubMed] | |
dc.relation.references | Fink, A.L., Protein Aggregation: Folding Aggregates, Inclusion Bodies and Amyloid (1998) Fold. Des, 3, pp. R9-R23. , [CrossRef] | |
dc.relation.references | Merlini, G., Bellotti, V., Andreola, A., Palladini, G., Obici, L., Casarini, S., Perfetti, V., Protein Aggregation (2001) Clin. Chem. Lab. Med, 39, pp. 1065-1075. , [CrossRef] | |
dc.relation.references | Lindner, A.B., Demarez, A., Protein Aggregation as a Paradigm of Aging (2009) Biochim. Biophys. Acta, 1790, pp. 980-996. , [CrossRef] | |
dc.relation.references | Hussack, G., Hirama, T., Ding, W., Mackenzie, R., Tanha, J., Engineered Single-Domain Antibodies with High Protease Resistance and Thermal Stability (2011) PLoS ONE, 6, p. 28218. , [CrossRef] | |
dc.relation.references | Dumoulin, M., Conrath, K., van Meirhaeghe, A., Meersman, F., Heremans, K., Frenken, L.G.J., Muyldermans, S., Matagne, A., Single-Domain Antibody Fragments with High Conformational Stability (2002) Protein Sci, 11, pp. 500-515. , [CrossRef] | |
dc.relation.references | Mendoza, M.N., Jian, M., King, M.T., Brooks, C.L., Role of a Noncanonical Disulfide Bond in the Stability, Affinity, and Flexibility of a VHH Specific for the Listeria Virulence Factor InlB (2020) Protein Sci, 29, pp. 990-1003. , [CrossRef] | |
dc.relation.references | Hagihara, Y., Mine, S., Uegaki, K., Stabilization of an Immunoglobulin Fold Domain by an Engineered Disulfide Bond at the Buried Hydrophobic Region (2007) J. Biol. Chem, 282, pp. 36489-36495. , [CrossRef] [PubMed] | |
dc.relation.references | Saerens, D., Conrath, K., Govaert, J., Muyldermans, S., Disulfide Bond Introduction for General Stabilization of Immunoglobulin Heavy-Chain Variable Domains (2008) J. Mol. Biol, 377, pp. 478-488. , [CrossRef] | |
dc.relation.references | Zabetakis, D., Olson, M.A., Anderson, G.P., Legler, P.M., Goldman, E.R., Evaluation of Disulfide Bond Position to Enhance the Thermal Stability of a Highly Stable Single Domain Antibody (2014) PLoS ONE, 9, p. e115405. , [CrossRef] [PubMed] | |
dc.relation.references | Miller, T.W., Messer, A., Intrabody Applications in Neurological Disorders: Progress and Future Prospects (2005) Mol. Ther, 12, pp. 394-401. , [CrossRef] [PubMed] | |
dc.relation.references | Marasco, W.A., Intrabodies: Turning the Humoral Immune System Outside in for Intracellular Immunization (1997) Gene Ther, 4, pp. 11-15. , [CrossRef] | |
dc.relation.references | Lo, A.S.Y., Zhu, Q., Marasco, W.A., Intracellular Antibodies (Intrabodies) and Their Therapeutic Potential (2008) Handb. Exp. Pharmacol, 181, pp. 343-373. , [CrossRef] | |
dc.relation.references | Slastnikova, T.A., Ulasov, A.V., Rosenkranz, A.A., Sobolev, A.S., Targeted Intracellular Delivery of Antibodies: The State of the Art (2018) Front. Pharmacol, 9, p. 1208. , [CrossRef] [PubMed] | |
dc.relation.references | van Audenhove, I., Gettemans, J., Nanobodies as Versatile Tools to Understand, Diagnose, Visualize and Treat Cancer (2016) EBioMedicine, 8, pp. 40-48. , [CrossRef] [PubMed] | |
dc.relation.references | Asaadi, Y., Jouneghani, F.F., Janani, S., Rahbarizadeh, F., A Comprehensive Comparison between Camelid Nanobodies and Single Chain Variable Fragments (2021) Biomark. Res, 9, pp. 1-20. , [CrossRef] | |
dc.relation.references | de Marco, A., Recombinant Expression of Nanobodies and Nanobody-Derived Immunoreagents (2020) Protein Expr. Purif, 172, p. 105645. , [CrossRef] | |
dc.relation.references | Reiter, Y., Schuck, P., Boyd, L.F., Plaksin, D., An Antibody Single-Domain Phage Display Library of a Native Heavy Chain Variable Region: Isolation of Functional Single-Domain VH Molecules with a Unique Interface (1999) J. Mol. Biol, 290, pp. 685-698. , [CrossRef] | |
dc.relation.references | Kunz, P., Flock, T., Soler, N., Zaiss, M., Vincke, C., Sterckx, Y., Kastelic, D., Hoheisel, J.D., Exploiting Sequence and Stability Information for Directing Nanobody Stability Engineering (2017) Biochim. Biophys. Acta-Gen. Subj, 1861, pp. 2196-2205. , [CrossRef] | |
dc.relation.references | Zabetakis, D., Anderson, G.P., Bayya, N., Goldman, E.R., Contributions of the Complementarity Determining Regions to the Thermal Stability of a Single-Domain Antibody (2013) PLoS ONE, 8, p. e77678. , [CrossRef] | |
dc.relation.references | Yamamoto, T., Hoshikawa, K., Ezura, K., Okazawa, R., Fujita, S., Takaoka, M., Mason, H.S., Miura, K., Improvement of the Transient Expression System for Production of Recombinant Proteins in Plants (2018) Sci. Rep, 8, pp. 1-10. , [CrossRef] | |
dc.relation.references | Kaur, J.J., Kumar, A., Kaur, J.J., Strategies for Optimization of Heterologous Protein Expression in E. coli: Roadblocks and Reinforcements (2018) Int. J. Biol. Macromol, 106, pp. 803-822. , [CrossRef] | |
dc.relation.references | Tripathi, N.K., Shrivastava, A., Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development (2019) Front. Bioeng. Biotechnol, 7, p. 420. , [CrossRef] [PubMed] | |
dc.relation.references | Vincke, C., Loris, R., Saerens, D., Martinez-Rodriguez, S., Muyldermans, S., Conrath, K., General Strategy to Humanize a Camelid Single-Domain Antibody and Identification of a Universal Humanized Nanobody Scaffold Cé Cile Vincke (2008) J. Biol. Chem, 284, pp. 3273-3284. , [CrossRef] [PubMed] | |
dc.relation.references | Hanck-Silva, G., Fatori Trevizan, L.N., Petrilli, R., de Lima, F.T., Eloy, J.O., Chorilli, M., A Critical Review of Properties and Analytical/Bioanalytical Methods for Characterization of Cetuximab (2019) Crit. Rev. Anal. Chem, 50, pp. 125-135. , [CrossRef] [PubMed] | |
dc.relation.references | Banisadr, A., Safdari, Y., Kianmehr, A., Pourafshar, M., Production of a Germline-Humanized Cetuximab ScFv and Evaluation of Its Activity in Recognizing EGFR-Overexpressing Cancer Cells (2017) Hum. Vaccines Immunother, 14, pp. 856-863. , [CrossRef] [PubMed] | |
dc.relation.references | Mitchell, L.S., Colwell, L.J., Analysis of Nanobody Paratopes Reveals Greater Diversity than Classical Antibodies (2018) Protein Engineering. Des. Sel, 31, pp. 267-275. , [CrossRef] | |
dc.relation.references | Mitchell, L.S., Colwell, L.J., Comparative Analysis of Nanobody Sequence and Structure Data (2018) Proteins Struct. Funct. Bioinform, 86, pp. 697-706. , [CrossRef] [PubMed] | |
dc.relation.references | Vattekatte, A.M., Shinada, N.K., Narwani, T.J., Noël, F., Bertrand, O., Meyniel, J.P., Malpertuy, A., de Brevern, A.G., Discrete Analysis of Camelid Variable Domains: Sequences, Structures, and in-Silico Structure Prediction (2020) PeerJ, 2020, p. e8408. , [CrossRef] | |
dc.relation.references | Kunz, P., Zinner, K., Mücke, N., Bartoschik, T., Muyldermans, S., Hoheisel, J.D., The Structural Basis of Nanobody Unfolding Reversibility and Thermoresistance (2018) Sci. Rep, 8, pp. 1-10. , [CrossRef] | |
dc.relation.references | Erreni, M., Schorn, T., D’autilia, F., Doni, A., Nanobodies as Versatile Tool for Multiscale Imaging Modalities (2020) Biomolecules, 10, p. 1695. , [CrossRef] | |
dc.relation.references | Sabir, J.S.M., Atef, A., El-Domyati, F.M., Edris, S., Hajrah, N., Alzohairy, A.M., Bahieldin, A., Construction of Naïve Camelids VHH Repertoire in Phage Display-Based Library (2014) Comptes Rendus Biol, 337, pp. 244-249. , [CrossRef] [PubMed] | |
dc.relation.references | Wang, X., Chen, Q., Sun, Z., Wang, Y., Su, B., Zhang, C., Cao, H., Liu, X., Nanobody Affinity Improvement: Directed Evolution of the Anti-Ochratoxin A Single Domain Antibody (2020) Int. J. Biol. Macromol, 151, pp. 312-321. , [CrossRef] | |
dc.relation.references | Rothbauer, U., Zolghadr, K., Tillib, S., Nowak, D., Schermelleh, L., Gahl, A., Backmann, N., Cardoso, M.C., Targeting and Tracing Antigens in Live Cells with Fluorescent Nanobodies (2006) Nat. Methods, 3, pp. 887-889. , [CrossRef] [PubMed] | |
dc.relation.references | Kirchhofer, A., Helma, J., Schmidthals, K., Frauer, C., Cui, S., Karcher, A., Pellis, M., Cardoso, M.C., Modulation of Protein Properties in Living Cells Using Nanobodies (2009) Nat. Struct. Mol. Biol, 17, pp. 133-138. , [CrossRef] | |
dc.relation.references | Rasmussen, S.G.F., Choi, H.J., Fung, J.J., Pardon, E., Casarosa, P., Chae, P.S., Devree, B.T., Kobilka, T.S., Structure of a Nanobody-Stabilized Active State of the B2 Adrenoceptor (2011) Nature, 469, pp. 175-180. , [CrossRef] | |
dc.relation.references | De Genst, E., Silence, K., Decanniere, K., Conrath, K., Loris, R., Kinne, J., Muyldermans, S., Wyns, L., Molecular Basis for the Preferential Cleft Recognition by Dromedary Heavy-Chain Antibodies (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 4586-4591. , [CrossRef] [PubMed] | |
dc.relation.references | Yang, C., Leung, G.P.H., Equilibrative Nucleoside Transporters 1 and 4: Which One Is a Better Target for Cardioprotection Against Ischemia-Reperfusion Injury? (2015) J. Cardiovasc. Pharmacol, 65, pp. 517-521. , [CrossRef] [PubMed] | |
dc.relation.references | Zimmermann, I., Egloff, P., Hutter, C.A.J.J., Kuhn, B.T., Bräuer, P., Newstead, S., Dawson, R.J.P.P., Seeger, M.A., Generation of Synthetic Nanobodies against Delicate Proteins (2020) Nat. Protoc, 15, pp. 1707-1741. , [CrossRef] | |
dc.relation.references | Hansen, J., Baum, A., Pascal, K.E., Russo, V., Giordano, S., Wloga, E., Fulton, B.O., Patel, K., Studies in Humanized Mice and Convalescent Humans Yield a SARS-CoV-2 Antibody Cocktail (2020) Science, 369, pp. 1010-1014. , [CrossRef] | |
dc.relation.references | Scheid, J.F., Barnes, C.O., Eraslan, B., Hudak, A., Keeffe, J.R., Cosimi, L.A., Brown, E.M., Zhang, S., B Cell Genomics behind Cross-Neutralization of SARS-CoV-2 Variants and SARS-CoV (2021) Cell, 184, pp. 3205-3221. , e24. [CrossRef] | |
dc.relation.references | Jang, H.I., Wilson, P.G., Sau, M., Chawla, U., Rodgers, D.W., Galperin, E., Single-Domain Antibodies for Functional Targeting of the Signaling Scaffold Shoc2 (2020) Mol. Immunol, 118, pp. 110-116. , [CrossRef] | |
dc.relation.references | Walter, J.D., Hutter, C.A.J., Garaeva, A.A., Scherer, M., Zimmermann, I., Wyss, M., Rheinberger, J., Egloff, P., Biparatopic Sybody Constructs Neutralize SARS-CoV-2 Variants of Concern and Mitigate Emergence of Drug Resistance (2021) bioRxiv, 2020, pp. 2020-11. , [CrossRef] | |
dc.relation.references | Hong, C., Byrne, N.J., Zamlynny, B., Tummala, S., Xiao, L., Shipman, J.M., Partridge, A.T., Rudd, M.T., Structures of Active-State Orexin Receptor 2 Rationalize Peptide and Small-Molecule Agonist Recognition and Receptor Activation (2021) Nat. Commun, 12, pp. 1-11. , [CrossRef] | |
dc.relation.references | Li, T., Cai, H., Yao, H., Zhou, B., Zhang, N., van Vlissingen, M.F., Kuiken, T., Gong, Y., A Synthetic Nanobody Targeting RBD Protects Hamsters from SARS-CoV-2 Infection (2021) Nat. Commun, 12, pp. 1-13. , [CrossRef] | |
dc.relation.references | Schoof, M., Faust, B., Saunders, R.A., Sangwan, S., Rezelj, V., Hoppe, N., Boone, M., Azumaya, C.M., An Ultrapotent Synthetic Nanobody Neutralizes SARS-CoV-2 by Stabilizing Inactive Spike (2021) Science, 370, pp. 1473-1479. , [CrossRef] | |
dc.relation.references | Fan, C., Fan, M., Orlando, B.J., Fastman, N.M., Zhang, J., Xu, Y., Chambers, M.G., Liao, M., X-Ray and Cryo-EM Structures of the Mitochondrial Calcium Uniporter (2018) Nature, 559, pp. 575-579. , [CrossRef] | |
dc.relation.references | Wingler, L.M., McMahon, C., Staus, D.P., Lefkowitz, R.J., Kruse, A.C., Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody (2019) Cell, 176, pp. 479-490. , e12. [CrossRef] | |
dc.relation.references | Ma, C., Wu, X., Sun, D., Park, E., Catipovic, M.A., Rapoport, T.A., Gao, N., Li, L., Structure of the Substrate-Engaged SecA-SecY Protein Translocation Machine (2019) Nat. Commun, 10, pp. 1-9. , [CrossRef] | |
dc.relation.references | Wu, T., Liu, J., Liu, M., Liu, S., Zhao, S., Tian, R., Wei, D., Xiao, H., A Nanobody-Conjugated DNA Nanoplatform for Targeted Platinum-Drug Delivery (2019) Angew. Chem. Int. Ed, 58, pp. 14224-14228. , [CrossRef] [PubMed] | |
dc.relation.references | Cornish-Bowden, A., Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences: Recommendations 1984 (1985) Nucleic Acids Res, 13, p. 3021. , [CrossRef] [PubMed] | |
dc.relation.references | Liu, W., Song, H., Chen, Q., Yu, J., Xian, M., Nian, R., Feng, D., Recent Advances in the Selection and Identification of Antigen-Specific Nanobodies (2018) Mol. Immunol, 96, pp. 37-47. , [CrossRef] [PubMed] | |
dc.type.coar | http://purl.org/coar/resource_type/c_dcae04bc | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/review | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |