Show simple item record

dc.contributor.authorMoreno E
dc.contributor.authorValdés-Tresanco M.S
dc.contributor.authorMolina-Zapata A
dc.contributor.authorSánchez-Ramos O.
dc.date.accessioned2022-09-14T14:34:10Z
dc.date.available2022-09-14T14:34:10Z
dc.date.created2022
dc.identifier.issn17560500
dc.identifier.urihttp://hdl.handle.net/11407/7585
dc.descriptionObjective: To design and construct a new synthetic nanobody library using a structure-based approach that seeks to maintain high protein stability and increase the number of functional variants within the combinatorial space of mutations. Results: Synthetic nanobody (Nb) libraries are emerging as an attractive alternative to animal immunization for the selection of stable, high affinity Nbs. Two key features define a synthetic Nb library: framework selection and CDR design. We selected the universal VHH framework from the cAbBCII10 Nb. CDR1 and CDR2 were designed with the same fixed length as in cAbBCII10, while for CDR3 we chose a 14-long loop, which creates a convex binding site topology. Based on the analysis of the cAbBCII10 crystal structure, we carefully selected the positions to be randomized and tailored the codon usage at each position, keeping at particular places amino acids that guarantee stability, favoring properties like polarity at solvent-exposed positions and avoiding destabilizing amino acids. Gene synthesis and library construction were carried out by GenScript, using our own phagemid vector. The constructed library has an estimated size of 1.75 × 108. NGS showed that the amino acid diversity and frequency at each randomized position are the expected from the codon usage. © 2022, The Author(s).eng
dc.language.isoeng
dc.publisherBioMed Central Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85127254338&doi=10.1186%2fs13104-022-06001-7&partnerID=40&md5=f1b6a817144ea073bb91b3bd7251c847
dc.sourceBMC Research Notes
dc.titleStructure-based design and construction of a synthetic phage display nanobody library
dc.typeNote
dc.typeother
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaOtro
dc.identifier.doi10.1186/s13104-022-06001-7
dc.subject.keywordNanobodyeng
dc.subject.keywordPhage displayeng
dc.subject.keywordStructure-based designeng
dc.subject.keywordSynthetic nanobody libraryeng
dc.relation.citationvolume15
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationMoreno, E., Faculty of Basic Sciences, University of Medellin, Medellín, Colombia
dc.affiliationValdés-Tresanco, M.S., Faculty of Basic Sciences, University of Medellin, Medellín, Colombia
dc.affiliationMolina-Zapata, A., Faculty of Basic Sciences, University of Medellin, Medellín, Colombia, Grupo de Micología Médica y Experimental, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
dc.affiliationSánchez-Ramos, O., Biological Sciences School, University of Concepción, Concepción, Chile
dc.relation.referencesMuyldermans, S., A guide to: generation and design of nanobodies (2021) FEBS J, 288 (7), p. 2084. , COI: 1:CAS:528:DC%2BB3cXhs1ygu77E
dc.relation.referencesValdés-Tresanco, M.S., Molina-Zapata, A., González Pose, A., Moreno, E., Structural insights into the design of synthetic nanobody libraries Molecules, 2022. , manuscript accepted
dc.relation.referencesMoutel, S., Bery, N., Bernard, V., Keller, L., Lemesre, E., de Marco, A., NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies (2016) eLife, 5 (JULY), pp. 1-31
dc.relation.referencesMcMahon, C., Baier, A.S., Pascolutti, R., Wegrecki, M., Zheng, S., Ong, J.X., Yeast surface display platform for rapid discovery of conformationally selective nanobodies (2018) Nat Struc Mol Biol
dc.relation.referencesZimmermann, I., Egloff, P., Hutter, C.A.J., Arnold, F.M., Stohler, P., Bocquet, N., Synthetic single domain antibodies for the conformational trapping of membrane proteins (2018) eLife
dc.relation.referencesSevy, A.M., Chen, M.T., Castor, M., Sylvia, T., Krishnamurthy, H., Ishchenko, A., Hsieh, C.M., Structure- and sequence-based design of synthetic single-domain antibody libraries (2020) Protein Eng Des Sel, 33, pp. 1-13
dc.relation.referencesZimmermann, I., Egloff, P., Hutter, C.A.J., Kuhn, B.T., Bräuer, P., Newstead, S., Generation of synthetic nanobodies against delicate proteins (2020) Nat Protoc, 15 (5), pp. 1707-1741. , COI: 1:CAS:528:DC%2BB3cXmsleisb4%3D
dc.relation.referencesZhao, Y., Wang, Y., Su, W., Li, S., construction of synthetic nanobody library in mammalian cells by DsDNA-based strategies (2021) ChemBioChem, 22, pp. 2957-2965
dc.relation.referencesChen, X., Gentili, M., Hacohen, N., Regev, A., A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies (2021) Nat Commun, 12 (1), pp. 1-14. , COI: 1:CAS:528:DC%2BB3MXosVShsrk%3D
dc.relation.referencesSanavia, T., Birolo, G., Montanucci, L., Turina, P., Capriotti, E., Fariselli, P., Limitations and challenges in protein stability prediction upon genome variations: towards future applications in precision medicine (2020) Comput Struct Biotechnol J, 18, pp. 1968-1979. , COI: 1:CAS:528:DC%2BB3cXhsFehsL7O
dc.relation.referencesConrath, K.E., Lauwereys, M., Galleni, M., Matagne, A., Frère, J.-M., Kinne, J., β-Lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae (2001) Antimicrob Agents Chemother, 45 (10), p. 2807. , COI: 1:CAS:528:DC%2BD3MXntFCisLk%3D
dc.relation.referencesWei, G., Meng, W., Guo, H., Pan, W., Liu, J., Peng, T., Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein (2011) PloS ONE, 6 (12). , https://pubmed.ncbi.nlm.nih.gov/22164266/.Accessed27Nov2021
dc.relation.referencesYan, J., Li, G., Hu, Y., Ou, W., Wan, Y., Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications (2014) J Transl Med, 12 (1), pp. 1-12
dc.relation.referencesChi, X., Liu, X., Wang, C., Zhang, X., Li, X., Hou, J., Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain (2020) Nat Commun
dc.relation.referencesSaerens, D., Pellis, M., Loris, R., Pardon, E., Dumoulin, M., Matagne, A., Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies (2005) J Mol Biol, 352 (3), pp. 597-607. , COI: 1:CAS:528:DC%2BD2MXpslyltbk%3D
dc.relation.referencesVincke, C., Loris, R., Saerens, D., Martinez-Rodriguez, S., Muyldermans, S., Conrath, K., General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold (2009) J Biol Chem, 284 (5), pp. 3273-3284. , COI: 1:CAS:528:DC%2BD1MXpsV2ltA%3D%3D
dc.relation.referencesCornish-Bowden, A., Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984 (1985) Nucleic Acids Res, 13 (9), p. 3021. , COI: 1:CAS:528:DyaL2MXktVagsb4%3D
dc.relation.referencesAl-Lazikani, B., Lesk, A.M., Chothia, C., Standard conformations for the canonical structures of immunoglobulins (1997) J Mol Biol, 273 (4), pp. 927-948. , COI: 1:CAS:528:DyaK2sXnslGrsrg%3D
dc.relation.referencesMitchell, L.S., Colwell, L.J., Comparative analysis of nanobody sequence and structure data (2018) Proteins, 86 (7), pp. 697-706. , COI: 1:CAS:528:DC%2BC1cXnsVKlu7w%3D
dc.relation.referencesMitchell, L.S., Colwell, L.J., Analysis of nanobody paratopes reveals greater diversity than classical antibodies (2018) Protein Eng Des Sel, 31 (7-8), pp. 267-275. , COI: 1:CAS:528:DC%2BC1MXpsVClsrc%3D
dc.relation.referencesBerman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., The protein data bank (2000) Nucleic Acids Res, , http://www.rcsb.org/pdb/status.html.Accessed11May2020
dc.relation.referencesBurley, S.K., Berman, H.M., Bhikadiya, C., Bi, C., Chen, L., di Costanzo, L., RCSB protein data bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy (2019) Nucleic Acids Res, 47 (D1), pp. D464-D474. , COI: 1:CAS:528:DC%2BC1MXhs1Cgt7jO
dc.relation.referencesDunbar, J., Krawczyk, K., Leem, J., Baker, T., Fuchs, A., Georges, G., SAbDab: the structural antibody database (2014) Nucleic Acids Res, 42 (D1), pp. D1140-D1146. , COI: 1:CAS:528:DC%2BC2cXosF2g
dc.relation.referencesCohen, T., Halfon, M., Schneidman-Duhovny, D., Rachel, T., Benin, S., NanoNet: rapid end-to-end nanobody modeling by deep learning at sub angstrom resolution (2021) bioRxiv
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record